
153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Research Briefing

Jacob Torrey & Mark Bridgman
May 21, 2015

Crema

1

The views, opinions, and/or findings contained in this presentation
are those of the authors and should not be interpreted as

representing the official views or policies of the Department
of Defense or the U.S. Government.

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

In a Nutshell

}  What are we doing?

Crema was a program to explore the sub-Turing complete
(TC) programming languages and execution environments.

By restricting the computational expressiveness of programs
to the minimum needed to perform the programmer’s intent,

“Weird machines” can be eliminated and more powerful
formal methods explored

Give the developers the programming tools to make
development of safer & more secure software easier and

automated analysis problems easier

OR

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Objective

}  Crema aimed to demonstrate the feasibility and
security benefits of general purpose sub-TC
programming languages
◦  Create a language and corresponding execution environment that

is purposefully sub-TC
◦  Explore computing tasks that explicitly need Turing completeness

and how to logically isolate them

}  Explore the impact on formal methods when the
computational models are restricted
◦  With Crema, software can be analyzed with more granularity

and/or at larger scale
◦  Analyses undecidable for TC languages may be possible

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Background Information

}  Weird Machines

}  LLVM
◦  Modular and abstracted open-source compilation tool-chain
◦  Compiles to immediate representation (IR) for advanced

optimization and static analysis/symbolic execution

}  KLEE
◦  Performs symbolic execution using LLVM IR
◦  Executes most/all code paths in program to explore for crash/error

states

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Problem Statement

}  TC languages provide more expressiveness than
most programmers need for most tasks
◦  This often leads to unintended emergent behaviors or "weird

machines” programmed by attacker

}  The majority of general purpose programming
languages are designed to be TC and are susceptible
to weird machine behavior

}  Turing completeness and the Halting problem makes
certain forms of formal methods/program analysis
undecidable or intractable, decreasing software
quality

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

“Circle of Bugs”

Complex
parser

Hard
analysis

tasks

Undetected
bugs/

emergent
properties

Ineffective
“signatures”,
restrictions

Complex
data format

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Input Parsing is Safety-
Critical

}  Problem: code receives attacker-controlled inputs,
inputs drive execution flow, system enters
untrustworthy state (often enabling arbitrary
computation by attacker)
◦  General computation model is needed for input handling (model

must at least match practice!)

}  Predicting behavior of a complex code (e.g., parsers)
on inputs is hard to impossible

}  Software verification: producing proofs that software
remains in the safe, intended state no matter what the
inputs
◦  Challenge: state explosion, some properties cannot be

established or proved algorithmically

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

“Undecidability Cliff”

}  The more powerful/expressive an execution
environment is, the harder it is to analyze

}  Automated analysis tends to become provably
impossible after a complexity threshold
◦  Hierarchies of complexity exist to describe such thresholds

}  Undecidability "cliff":
◦  Automatically recognizing whether a TC program halts or loops

forever is impossible
◦  Automatically verifying if two parsers are equivalent becomes

undecidable at "non-deterministic context free”

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Technical Approach

}  Developed proof-of-concept sub-TC language front-
end for LLVM
◦  Designed to be general purpose and minimal learning curve
◦  Could be used as parser “bridge” into a formal type system
◦  Used in transducers/parsers that convert input into structured data

}  Explore sub-TC space from LangSec perspective
◦  How the lack of halting problem reduces weird machines
◦  Limits power given to attackers in the event of compromise

}  Explore program analysis improvements
◦  More granular checks are now possible to verify correctness
◦  State-space growth shown to be slower/SMT problems easier

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Results
And Impact

}  Prototype language (Crema)
◦  Sub-TC
◦  Easy to learn
◦  Capable of performing most* programming tasks
◦  Open source (https://github.com/ainfosec/crema)

}  KLEE on C versus Crema highlights benefit for state-
space explosion

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Crema Example

}  “FizzBuzz”
int hundred[] = crema_seq(1, 100)

foreach(hundred as i) {
 int_print(i)
 str_print(" ")
 if (i % 3 == 0) {
 str_print("Fizz")
 }
 if (i % 5 == 0) {
 str_print("Buzz")
 }

 str_println(" ")
}

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

State-Space Growth

}  Symbolic input length vs. number of paths to search

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

State-Space Growth II

}  Paths to search as function of time:

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

State-Space Growth II

}  Instruction Coverage*

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

State-Space Growth (cont.)

}  Qmail C-language parser versus Crema parser for
SMTP:
◦  SMT solving time creates bottle-neck

Parser Execution
Time (s)

Max. States Instruction
Coverage (%)

Branch
Coverage (%)

Qmail C 31.50 678 44.47 33.96
Crema 28.67 76 61.97 37.74

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Reference Monitor
Implications

}  Reference monitors are automatons recognizing a
language of events

}  Currently are prefix-based (can only identify bad
patterns of events early)

}  With a Walther-recursive model, can strengthen the
“power” of the reference monitors to a larger
language set

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Impact

}  Break the cycle of complexity

}  Provides ability to verify software previously out of
range for contemporary methods

}  Automatically limits risks incurred through poor
programming practices

}  Answers key questions and provides empirical data
on restricted computational models

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Future Work

}  Restricting JIT compilation model in LLVM/HW
◦  While the program source may be sub-TC, an attacker may be

able to inject TC LLVM IR
◦  FPGA or customizable CPU environment

•  Crema LangSec paper modeled a CPU environment with a bit set to
enforce “forward-only execution” of loop-unrolled programs

•  Bring Crema benefits to hardware and embedded

}  More powerful formal methods tools
◦  What is possible now that was once infeasible?

•  When there is no concerns over termination and undecidability, what
FM techniques can now be implemented/made tractable

◦  GCC/LVVM static analysis hinting to programmers to use
restricted semantics

•  “Please write this portion in Crema”

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Future Work (cont.)

}  Automatic source conversion/TC detection
◦  Translate existing source where possible
◦  Identifying TC regions or where human-in-the-loop is needed

}  Identify security-sensitive code regions, specifically
for handling input parsing and limiting
expressiveness in those regions
◦  Easy for programmers to create code that cannot be analyzed;

Crema provides framework to describe semantics to verifier
◦  “IR” for representing verification hints and challenges
◦  Lessens expertise required for formal verification

}  Hammer port to Crema
◦  Formally verified reference implementations of parsers

}  Solve P=NP to reduce SMT solving times ;)

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Summary

}  Re-envision programming language development
◦  Prevent feature-creep in formal language development as we do

in software development
◦  Powerful enough for many tasks, easy enough for analysis/

verification – the “sweet spot”
•  The only safe method for input-driven programs

}  Analyze sub-TC languages and environments through
lens of LangSec

}  Explored new capabilities for formal methods
◦  Analysis highlighted benefits of restricted environment vis-à-vis

verification state-space growth

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Acknowledgments

}  We would like to thank DARPA and Dr. John Everett
for sponsoring this work

}  Additional thanks to Sergey Bratus, Halvar Flake and
Julien Vanegue for their input and support of this
work

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

22

Questions/Discussion

std::vector

System.out.println()

Crema

Ve
rif

ic
at

io
n

D
iff

ic
ul

ty

Finite state machines Push-down automaton

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

23

Backup

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

A Hierarchy of Complexity

}  Chomsky’s Hierarchy
◦  Provides a structure to the expressiveness of languages and the

power of the recognizers needed to parse them

153 Brooks Road, Rome, NY | 315.336.3306 | http://ainfosec.com Unclassified

Turing Completeness

}  Turing completeness
◦  A Turing machine is theoretical device which consists of an infinite

‘tape’ of cells, each that can contain a symbol from some defined
alphabet

◦  TC is used to describe a language that is capable of fully
simulating a Turing machine

