
UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land ForcesUNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

UNCLASSIFIED

Grammatical inference and language 
frameworks for LANGSEC

Kerry N. Wood

Richard Harang
U.S. Army Research Laboratory
21 MAY 2015



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Important points to remember.

1. My background is primarily in networking, modeling, and 

optimization.  (I am not an expert in formal language theory.)

2. A natural beginning for our work was a solid literature review.  

This paper and presentation are a direct result of trying to 

summarize that work.

3. This is not comprehensive.  We focused on those frameworks 

and techniques we thought might be useful.

We came into this knowing that inferring grammars is difficult.

However, rewriting all the existing code to use LANGSEC is 

probably harder.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Our contribution is mostly a 

survey of useful methods.

• A brief introduction and review of grammars and LANGSEC.  (OR) 

What we think LANGSEC is / is supposed to be.

• Models of learning: definitions are important.

• Models of teaching: is data available / how is it presented?

• Pattern Languages / EFS : our two favorite formalisms.

• Some initial work : where “initial” means “small amount.”

• Conclusions and future work : hope springs eternal.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

We all remember Chomsky classes 

and the recognizer types.

CS101 – formal production rules for ‘strings’ that have an exact 
mapping to different models of computation

Grammatical inference:

– You are given the output of the grammar (strings).

– You have to identify the generating structure.

– In essence, it is decompiling.  Just harder.

Grammar Power to recognize

Regular State machine

Context-free Stack machine

Context-sensitive Bounded automata

Unrestricted Turing machine

C
o

m
p

le
x
ity



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Most codes are imperfect 

recognizers.

Protocols are (either explicitly or implicitly) grammars.

Trouble begins when we mean to define a recognizer for �, but 

actually define one for � (and don’t know it).

ॸ: All 
possible 

messages�: Messages 
we actually 

accept

�: Messages 
we want to 

accept



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Why not just parse?

“LangSec” – language theoretic security

– Use only simple grammars with provable properties

– Validate all inputs before any processing; reject failures 

aggressively

– � = � → � ך � = Ͳ

Right now: really only helpful if you “bake it in”
Significant restrictions on message complexity

– Deterministic CFG  or weaker (or some non-Chomsky class 

recognizable in polynomial time

ॸ��
ॸ
�



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Learning: access to examples.

Learning from positive examples:

– All strings in the grammar are shown to the learner ሺ�+ = ݏ∀ ∈ ॷሻ
Positive and negative examples (aka “complete presentation”):

– Members and non-members are labeled and shown to the learner.

– ሺ�+ ∶ ݏ∀ ∈ ॷሻ and ሺ�−: ∀ ݏ ∈ Σכ − ॷሻ
Learning with an oracle (aka “membership queries”):

– The learner presents strings, the oracle returns membership labels.

Learning with a teacher (aka “equivalence queries”):
– The learner presents guesses as to the hypothesis grammar.

– Teacher verifies correctness, or returns an example string in the 
language, but not in the learner-suggested grammar.

Compressed / simple examples:

– The minimum set of examples that allow for identification of the 
grammar.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Models of learning.

Learning in the limit (Gold-style) 

– A learner is presented with examples from the entire grammar.

– At each iteration, it guesses a hypothesis grammar.

– At a certain iteration, the guesses never change.

Fixed-time identification

– Learner will see strings in � one at a time; determines beforehand 
how many steps it will take to produce a correct � � .

Finite identification

– As above, but learner decides after seeing each string whether to 
stop

Probably Approximately Correct (PAC) learning

– Given access to examples, a finite-length grammar, and finite-length 
examples; with probability ሺͳ − �), a learner will output a hypothesis that is � –
good. 

In general: a learner � takes some data �, and outputs a 

(possible) generating grammar �.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Inductive inference in the limit.

Ex. 1

Ex. 2

Learner /
Algorithm

Ex. ܯ
Ex. ܯ+ଵ
Ex. ܯ
Ex. ܯ+ଵ

H. 1

H. 2

H. ܯ
H. ܯ
H. ܯ
H. ܯ



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Pattern languages: replace 

variables with substrings.

• Constants and strings: Σ, Σכ, Σ+
• Variables: xଵ, xଶ, … ∈ �
• Patterns : � = �ଵ, �ଶ, … = Σכ⋃�
• Substitution: �

• �� = ௦భ�భ , ௦మ�మ , … , ௦ೖ�ೖ where �� ! = �
A pattern �௜ is regular if each variable appears at most once.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Patterns are somewhat natural and 
somewhat learnable.

They look just like regular expressions.

Angluin showed they are learnable.

– Lange and Wiehagen have a simple, but inconsistent algorithm.

The good:

In general, intractable to determine membership.ܰ� − �ݐ�݈݌݉݋ܿ
In general, they do not map to Chomsky.

Regular patterns encode regular languages.  

In general, relationships are hard to determine

Not closed under union.

Lots of “academic” sub-classes and cases.

PAC learnability is bad.

The bad:

Examples:� = ,ଵݔ ,ଶݔ ݔݔܽݖܾݕܽݔ…



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Elementary formal systems (EFS) are a 
logic programming analog.

Γ = ݌  ,ଵݔ ,ଶݔ ଷݔ ← ,ଵݔሺݍ ,ଶݔ ݍଷሻݔ ,ଵݔܽ ,ଶݔܾ ଷݔܿ ← ,ଵݔሺݍ ,ଶݔ ݍଷሻݔ ܽ, ܾ, ܿ ←
ܽ௡ܾ௡ܿ௡ ݊ ൒ ͳ } :

Γ = ݌  ଵܾݔܽ ← ሺܾܽሻܽ௡ܾ௡݌ଵሻݔሺ݌ ݊ ൒ ͳ } :



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

EFS’ with specific properties map 
nicely to Chomsky.

A clause / EFS (ܣ ← ,ଵܤ … ,  …௠) isܤ
Variable bounded� ܣ ⊇ � ଵܤ ⋃ …⋃�ሺܤ௠ሻ
Length boundedܣ� ൒ �ଵܤ + ⋯+ |�௠ܤ|
Regular� is regular for all � ∈ Γ
Right / left linear 

pattern of the head is ݓݔ for some ݓ ∈ Σ+
pattern of the head is ݔݓ for some ݓ ∈ Σ+

Pattern languages are a single-clause EFS:Γ = ݌} � ←}

Recursively enumerable

Context-sensitive

Context-free

Regular



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Inferability results are slightly

more encouraging.

Hereditary clause:݌ �ଵ, … , �௡ ← ଵݍ �ଵ, … , �௧భ , ଶݍ �௧భ , … , �௧మ , … , ,௟ሺ�௧೗−భ+ଵݍ … , �௧೗ሻ
If for each ݆ = ͳ,… , ௟ݐ pattern �௝ is a substring of some pattern �௜.

LB-H-EFS(m,k):ܣ� ൒ �ଵܤ + ⋯+ |�௠ܤ| (length bounded) and hereditary൑ ݉ clauses൑ ݇ variable occurrences in the head of each clause 

Language in 
Chomsky 
Hierarchy 

EFS 
Gold 

Inferable  
 

 (Hereditary)b 
polynomial-PAC 

Inferable 
 # of clauses → ∞a ܰa ∞ (݉,݇) 

recursively 
enumerable 

Variable 
bounded 

NO NO NO -- 

context-sensitive 
Length 

bounded 
NO   YES NO NOc 

context-free regular NO YES NO YES 
regular right/left linear NO YES NO YES 



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Many problems involve 

differentiating these classes.

Security problem Subset Learning model

Supervised learning �⋃� ך � PAC with positive and negative examples

Anomaly detection, type 1 � PAC with positive examples

Anomaly detection, type 2 � PAC with noisy positive examples

Fuzzing � ך � Learning with an oracle

Unsupervised clustering Subsets of �
or � ך � PAC with positive examples in a mixture 

setting

ॸ��
Q: If we look at these as 

grammar inference problems, 

can we develop any intuition / 

bounds / definition of success?



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Simple → inferable.

Hypothesis: most data “in the wild” comes from simple 
grammars.

A protocol or code may claim to accept a large, complex 

grammar.  Really, most messages are members of simpler 

sub-grammars (or unions of sub-grammars).  

Sometimes classifying messages is a good place to start.

Are most messages as complex as the overall grammar?  

Use program structure as a guide.

Can we apply a grammar to those control flow data?

Can we segment a large grammar via sub-grammars?



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Weblog data from live system.

POST Requests (Anonymized URIs) # of Samples
/7NWS/XBPD07F/HXZRT/6BR/PR9M/_x0_.Q7OJ 83199

/0YDO8J33LKSC/DKWPZJ/QCSY1BWNRIG65;R9LZ64B6GI=_x0_!_x1_!_x2_ 2366

/5HEZP8EKVK3R9RGF9D_x0__x1__x2__x3_ 204950

GET Requests (Anonymized URIs) # of Samples
/KPGF/7OH0EHB1.HE9?id=_x0_%F95X4L2%_x1__x2__x3__x4_'_x5__x6_

%_x7_%_x8__x2__x3__x11_'_x12__x6_%_x14_%_x15_='_x16_'
6464

/89TM/8J7MNN1/3H6WH/H751AQ57?_t=cd&33XKQ5I6=_x0_&IMK6XIR3=_x

1_&AELAN=_x2_&COV=en&89S8A2JUFSVXE=_x3_
3096

Lange and Weihagen’s (LW) algorithm was applied to weblog data.

Log entries are batched by endpoint and “inferred.”
A straightforward, initial example.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Fuzzing  ? Grammar Inference

<corpus>/jpeg/full/images/*src:000619*
ffd8ffe000104a46494600010102001c001c0000ffdb004300281c1e231e19282321232d2b

28303c64413c37373c7b585d4964918099968f808c8aa0b4e6c3a0aadaa_x0_8a8cc8ffcbd
aeef5ffffff9bc1fffffffaffe6fdfff8ffdb0043012b2d2d3c353c76_x1_4176f8a58ca5f
8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f8f

8f8f_x2_f8f8f8f8f8f8f8f8f8f8ffc10011080020002003012200021101031101ffc40018
00010100030000000000000000000000000_x3_03000104ffc4002510000_x4_0_x5_01040
103050000000000000000_x6_0_x7_3_x8_0_x9_41221312241_x10_71_x11_143361a1ffc
400160101010100000000000000000000000000000102ffc4001a110100020301000000000

0000000000000_x12_122241ffda000c03010002110311000f00567_x13_c_x14_

25 (504,117)

/jpeg/edges-only/images/*src:003554*

12

ffd8ffdd0004_x0_00b400e8ffdb00438028101efffaffe6fdfff8ffdb0043012b2d2d3c35
3c64414176f8a58ca5f8f8d500010000f8f8f8f0f8f8f84a64653d79906fc317d3caf8f8f8

f8f8f8f8f8f801001c0000ffdb004300281c1e231e19282336232d2bef303c64413c37373c

7b585d49649180999600018c8aa0b4ad8a8cc8ffe4daee097affff9bc1fffffffaffd1fdff

f8ffdb0043012b2d2d3cf8f8f8f8e3f8f0e9f900f8f84a6a653d79906fdf17d3b7f8f8f8f8

f8f8f8f8f8ffca001108_x2_0_x3__x4__x4_2003012200021101031101ffda00060001180
12200021101031101ffda0006000103000300010000000000040000000001ffda000801010

101010101010_x1_

(260,0)

/jpeg/edges-only/images/*src:000512*
12

(170,80)
ffd8ffe000104a_x0__x3__x4__x3__x1_0_x2_

LW applied as in previous slide.

Zalewski’s AFL does the test case generation / organizing.



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Future work.

• Explore ongoing work on binary analysis / malware auto-

generation to help us identify grammars.

– Instrument binaries via fuzzing.

– Analyze binaries via lifting and decompiling tools.

– Learn “low hanging fruit” grammars.
– If most of the grammar is ignored most of the time, maybe the 

“simple stuff” is a good place to start.

• Input normalizer / firewall for known applications.

• Once you know (a) the grammar, enforce the grammar.

• EFS seems intuitive.  Can we use it to help define protocols and 

message structures that adhere to specific classes?



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Questions?



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Backup Slides



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

For example…

Can we program provably interoperable stacks?

Does your protocol need to be written in BNF? Then the answer is NO

BNF is context-free

Equivalence between two context free grammars is undecideable (unless you know your grammar is deterministic)

In other words: if you have two different implementations of the same (context free) protocol, then you can never

prove that they accept the same set of strings (unless you prove that both are deterministic)

See Sassaman et al. 2013: x.509 certificate forgeries

Can we write a behavioral malware detector?

Are you trying to detect the behavior before it actually happens? Then the answer is NO

Program X: “Halt if this embedded program does Y, otherwise loop forever”; does program X halt?

If I have a bunch of good traffic and a bunch of bad traffic, can I learn a classifier that 
will generalize?

NO (as long as factoring integers is as hard as we think it is)

Valiant and Kearns: learning even a regular grammar in polynomial time that (with high probability) will 

have bounded error is not possible

If you can learn DFAs in the PAC framework, you can factor Blum integers

Can I at least validate that incoming messages are well-formed first?

PROBABLY NOT FAST ENOUGH (since most network protocols are stronger than context-free (see 

Davidson et al. 2009) 

Parsing CSGs can be anywhere up to NP (Satta, 1992)



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

“Finite Thickness” and “finite elasticity”
Finite Thickness: No (non-empty) set of strings occurs in infinitely many 

languages in the class under consideration

Finite Elasticity: There is no infinite set of strings that is consistent with 

every infinite sequence of languages in the class

The existence of “tell-tales” in the class
A string or set of strings unique to a single member of the class

In a security context: “signature”

Finite language, positive presentation, no noise:

Memorize everything you’ve ever seen
Doesn’t scale



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Having an oracle that knows the grammar and can provide complex 

responses helps

– To learn DFAs in polynomial time with arbitrary data requires

membership and equivalence queries (Angluin, ’88)
• Extends to a small subset of CFGs (those that can be written 

compactly in CNF; algorithm is polynomial in size of set of 

symbols)

A training set designed to teach the learner your grammar helps

– CFGs are PAC-learnable from “simple” presentations
Some non-Chomsky grammars are identifiable under various conditions

– Notable example: Pattern languages can be identified from positive 

examples…
• …but are NP-complete to recognize



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Finding minimal DFAs from positive and negative examples is NP-hard

Angluin ’78; Gold ’78

Approximating a minimal target DFA from positive and negative examples to within 
any finite polynomial factor is NP-hard

Pitt and Warmuth, ’93

Representation-independent result: DFAs are cryptographically hard to learn from 
labeled examples

Existence of a weak learner for a DFA implies a polynomial advantage in recovering the LSB of the 

plaintext of an RSA-encrypted message

Kearns and Valiant, ’94

To learn DFAs in polynomial time with arbitrary data requires membership and 
equivalence queries

Extends to a small subset of CFGs (those that can be written compactly in CNF; algorithm is 

polynomial in size of set of symbols)

Angluin, ’88

DFAs are learnable from “simple” examples, but those examples must be selected 
based on the DFA and learning algorithm

Very, very simple CFGs appear to be empirically learnable from data…
…With a lot of effort, a little luck, and no theoretical guarantees
See, e.g., Omphalos competition


