
Fuzzing and protocol analysis
case-study of DNP3

Adam Crain, Automatak

Developed by Harris
Corp, handed over to a
vendor-neutral User
Group in 1993.

Many features have been
“bolted on”, including
security.

Layered Architecture

Transport Layer

Application Layer

Link Layer

Application Service Data Unit (ASDU)
Typical max size of 2KB
semantics == functions + objects

Tx segmentation
Rx re-assembly of APDUs

User code IED/RTU or your SCADA master

Adds CRCs and addressing. Error
checking and (de) multiplexing.

Application layer messages

Application-layer semantics

READ

WRITE

OPERATE

CONFIRM

…..

RESPONSE

UNSOLICITED

FUNCTION CODES

OBJECTS

Measurements, time sync, file transfer, controls, etc, etc

●  ∞ combinations
●  multiple types per message
●  Some function codes are

“function only”

Project Robus

•  Started in April 2013

•  30+ CVEs found via fuzzing

•  Deep study of failure modes

in one protocol

•  automatak.com/robus

Focus on serial / masters

DNP3 Fuzzing

Test DNP3 Message (DL, TL, or AL)

Request Link States

Link Status

x Num Test Cases

Request

Response

x Num Retry (10)

Common Faults

 uint32_t count = stop - start + 1; // ← integer overflow

F0 82 00 00 01 00 02 00 00 00 00 FF FF FF FF

Unsolicited
Response

Group 1
Variation 0

Sizeless?!

4 byte
start/stop

0

4294967295

Less Common Faults

Unexpected function code / object combinations

DD 82 00 00 0C 01 00 00 01 rnd(11) rnd(11)

Unsolicited
Response

Control
Relay
Output Block

1 byte
start/stop
 ●  buffer overrun

●  not malformed!
●  unexpected objects
●  accepts broadcast

CROB #1

CROB #2

DNP3 Security

Transport Layer

Link Layer

Application Layer

 Secure Authentication

●  Tightly coupled to the DNP3
application layer

●  Auth-only
●  New functions
●  New objects
●  2 modes of authentication

Application Layer

 Complex Parsing

Porous Trust Boundary

•  Data is dangerous,

intended function matters
not.

•  Every time you extend

DNP3, you make it less
secure.

•  Optional challenges make
security state machine
overly complex

Logging %n%n%n

2 modes of authentication

Challenge-response – 2
pass authentication

“Aggressive mode” –
1 pass authentication

Aggressive mode message

 ///// Payload Headers //// Header / Function

Issue #1: Aggressive-mode ambiguity

????

You can only tell if this is an aggressive mode
request by speculatively parsing the 1st object
header. Ambiguity is dangerous.

Issue #2: Lack of an envelope for HMAC

DNP3 headers cannot be “skipped”. They must be
parsed sequentially (at least lightly), so that you known
where the next one starts.

 // HMAC USER, CSQ Header / Function

“Session key status object”

•  Total size framed by TLV in
wrapping header

•  Composed of fixed-size and
variable-length subfields

•  Final v-length field is the
remainder of the encapsulation.

“Update key change reply”

•  Total size framed by TLV in
wrapping header

•  Composed of fixed-size and

variable-length subfields

•  Final v-length field is the
remainder of the encapsulation
AND a length prefix.

What does the spec have to say?

SA Conclusions

•  Prefer a layered approach to SCADA

security to that decouples legacy
protocol encodings/semantics from
security.

•  Design security to address both function

and implementation attack surface.

How can langsec help?

•  Critical infrastructure vendors need better tools

besides hand-rolled parsers.

•  Standards bodies need the theory/guidance to

produce better designs.

•  Protocols need reference implementations to guide
their evolution.

Questions?

