Unambiguous Encapsulation
Separating Data and Signaling
LangSec workshop 2015
Michael Ossmann

Primary on Unambiguous Encapsulation

Creator of multiple OSHW projects, Ubertooth, HackRF, Daisho, YARD Stick One

Founder of Great Scott Gadgets
Dominic Spill

Code for Unambiguous Encapsulation

Dev on Ubertooth, BTBB, gr-bluetooth, Daisho, USBProxy

Other projects include BeagleDancer, PS/2 tap and fcc.io
Disclaimer

The views expressed are the views of the authors and do not reflect the official policy or position of the Department of Defense or the United States Government.
Outline

The Problem

Unambiguous Encapsulation

Error Control Codes

Finding Interesting Error Control Codes
Background

LANGSEC

Packets in Packets
The Problem - Packets in Packets

Interference or glitch obscures packet header

Second packet in payload

Receiver detects second packet

Zigbee / Ethernet susceptible
The Problem - Packets in Packets

Credit: Travis Goodspeed
Ethernet Too!

Packet-In-Packet on wired Ethernet

<table>
<thead>
<tr>
<th>Idle</th>
<th>SSD</th>
<th>Preamble</th>
<th>SFD</th>
<th>Data</th>
<th>SFD</th>
<th>Data</th>
<th>FCS</th>
<th>ESD</th>
<th>Idle</th>
</tr>
</thead>
</table>

(0x800), length 1104: (tos 0x0, ttl 64, id 20574, offset 0, flags [none],
proto UDP (17), length 1090)

0x0000: 0022 6bdc c655 001f 1637 b13d 0800 4500 ."k..U...7.=..E.
0x0010: 0442 505e 0000 4011 62f1 c0a8 0001 c0a8 .EP^.@.b
0x0020: 420a 927d 0035 0024 0000 c007 0100 0001 B..} .5.$
0x0030: 0000 0000 0000 0667 66f6 66c 6503 636fgoogle.co
0x0040: 6d00 0001 0001 0000 749c 9b85 0000 0000 m........t ..
0x0050: 0000 0000 0000 0000 0000 0000 0000 0000

0x00f0: 0000 0000 0000 0000 0000 0000 0000 0000
0x0100: 2165 c8fe 0000 0000 0000 0000 0000 0000
0x0110: 0000 0000 0000 0000 0000 0000 0000 0000

0x0400: 0055 0055 0055 0055 d500 1f16 37f2 ff00UUUUU...7....
0x0410: 1f16 37b1 3d08 0045 0000 3900 0040 0040 .7.=..E..9...@.
0x0420: 0616 bb0a 0108 020a 0108 0102 9a02 9a00
0x0430: 0000 0000 0000 0500 0200 04f 5500 0000POL
0x0440: 0000 0000 0000 0000 0066 66f6 6261 7200foob.
The Problem - Buffer Overflow

User supplied data written to buffer

Overwrite data on stack

CPU executes data as instructions
Given a piece of data without context, it is not possible to determine if it is meta-data or encapsulated data.
Unambiguous Encapsulation

Given a piece of data without context, it is possible to determine if it is meta-data or encapsulated data.
If you haven’t found the analog medium beneath a particular bit or byte, keep digging
Error Control Codes

Error control codes are used at the boundary between analog and digital.

Can we find error control codes that provide useful encapsulation properties?
Error Control Codes

Encapsulate data in codewords

Binary Linear Block Codes encode k data bits in n bit codewords with a minimum Hamming distance d

Often designated by $[n,k]$ or $[n,k,d]$
[7,4,3] Hamming Code

<table>
<thead>
<tr>
<th>Codeword 1</th>
<th>Codeword 2</th>
<th>Codeword 3</th>
<th>Codeword 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td>0101010</td>
<td>1101001</td>
<td>1000011</td>
</tr>
<tr>
<td>1110000</td>
<td>1011010</td>
<td>0110011</td>
<td>0110011</td>
</tr>
<tr>
<td>1001100</td>
<td>1100110</td>
<td>0011001</td>
<td>0001111</td>
</tr>
<tr>
<td>0111100</td>
<td>0010110</td>
<td>0100101</td>
<td>0001111</td>
</tr>
<tr>
<td>0111100</td>
<td>0101101</td>
<td>1010101</td>
<td>1011111</td>
</tr>
<tr>
<td>1001100</td>
<td>1100110</td>
<td>0100101</td>
<td>1111111</td>
</tr>
<tr>
<td>0000000</td>
<td>0101010</td>
<td>1101001</td>
<td>1000011</td>
</tr>
</tbody>
</table>

Each codeword is 7 bits long, \(n = 7 \)
There are \(2^4 \) codewords, \(k = 4 \)
At least 3 bits differ between any two codewords, \(d = 3 \)
[7,4,3] Hamming Code

codeword length = 7
number of codewords = 2^4
minimum Hamming distance = 3

One bit flipped: error corrected
Two bits flipped: error detected
Three bits flipped: undetected error
Implementation

[7,4,3] Hamming encoder:
 look-up table: 16 * 7 bits
[7,4,3] Hamming decoder:
 look-up table: 128 * 4 bits

Much of the complexity of coding theory is related to clever decoding methods, but a look-up table works for shorter (small n) codes
Decoding by look-up table is sort of a brute force approach.

We can also take a brute force approach to the discovery of new codes.

00000 01110
00011 10110
00101 11010
01001 11100

Hamming Distance = 2
Isolation

A code can be thought of as a pair of complementary sub-codes.
A [5,3,2,3] Isolated Complementary Binary Block Code (ICBBC)

codeword length = 5
number of codewords = 2^3
minimum Hamming distance = 2
minimum isolation = 3

One bit flipped: error detected
Two bits flipped: undetectable error, isolated
Three bits flipped: isolation broken
Searching for codes

C program to brute force search for codes

Depth First Search recursive algorithm
Other search methods

FPGA

Verilog implementation shows promise

Recursion difficult unless we know max depth of recursion at compile time

Z3 Python

Implementation of icbbcc search exist
Fast non-exhaustive search
ICBCC Search

Search space

\[2 \leq n \leq 8 \]
\[1 \leq \text{Hamming distance} \leq n \]
\[\text{Hamming distance} \leq \text{isolation} \leq n \]

Some larger codes sought

\[[15,7,9] \text{ code produce 111GB of output} \]
ICBCC Search Results

Results

19,189,776 codes found

Symmetric codes

[8,3,5] / [8,4,5] - similar subcode sizes

Asymmetric codes

[8,2,5] - subcodes of 2 / 44 codewords
Isolated Complementary Non-Binary Block Codes (ICNBC)

a 7-PSK example

Lee Distance from 2 to 6 is 3

Lee Distance from (2,1,3) to (6,6,6) is 3+2+3=8
ICNBC Examples

2 symbol codewords, minimum Lee distance of 2, isolation of 5:

\[[(0, 0), (1, 1)] \quad [(3, 4), (4, 3), (4, 5), (5, 4)] \]

3 symbol codewords, minimum Lee distance of 5, isolation of 7:

\[[(0, 0, 0), (4, 6, 6)] \quad [(3, 3, 2), (6, 4, 3)] \]
ICNBC Search

Largest search space of the project
11,000 sets of parameters
2 \leq n \leq 9
1 \leq \text{Lee distance} \leq 2n
1 \leq \text{isolation} \leq 2n
ICNBC Search Results

Results

20GB of successful output
Some processes constrained by resources

Very few symmetric codes

Asymmetric codes

[5,1,8] - subcodes of 2 / 10,264 codewords
[5,2,15] - subcodes of 2 / 4 codewords
Large Complementary Binary Block Codes (LCBBC)

Sometimes the largest binary block code for a given codeword length and Hamming distance is not a power of two.

Example: 8 bit codewords, minimum Hamming distance of 3, 20 codewords:

[0, 7, 25, 30, 42, 53, 75, 84, 97, 108, 114, 127, 140, 147, 166, 169, 176, 194, 197, 216]
LCBBC Search

Search space

\[2 \leq n \leq 15 \]

\[2 \leq \text{Hamming distance} \leq n \]
LCBBC Search Results

Smallest set of search results

~1MB

Smaller search space

Only searching for longest code
Code Selection

Error control codes are typically selected based on:

- code rate \((k/n) \)
- complexity of decoder
- probability of undetectable error
- probability of uncorrectable error

We suggest an addition to this list:
- probability of encapsulation breakage
Future Work

Implementations
gr-802.15.4
Ethernet using Daisho
Harvard architecture / NX replacement

Additional code classes

Investigate the nature of noise
Unambiguous Encapsulation

Any time you encapsulate data within other data, consider unambiguous encapsulation
Thank You

LANGSEC community
DARPA Cyber Fast Track
Sergey Bratus
David Hulton
Mike Kershaw
Tariq Bashir Ahmad
Questions?

http://github.com/moosmann/unambiguous-encapsulation

Twitter:
@michaelossmann
@dominicgs