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Abstract—Formal Language Theory for Security 
(LANGSEC) has proposed that formal language theory and 
grammars be used to define and secure protocols and parsers. 
The assumption is that by restricting languages to lower levels of 
the Chomsky hierarchy, it is easier to control and verify parser 
code. In this paper, we investigate an alternative approach to 
inferring grammars via pattern languages and elementary formal 
system frameworks. We summarize inferability results for 
subclasses of both frameworks and discuss how they map to the 
Chomsky hierarchy. Finally, we present initial results of pattern 
language learning on logged HTTP sessions and suggest future 
areas of research. 

Keywords—grammatical inference, LANGSEC, language 
identification, pattern language, elementary formal system (EFS) 

I. INTRODUCTION/MOTIVATION 
In [1], Sassaman et al. propose the use of formal language 

theory for security (LANGSEC). LANGSEC has primarily 
focused on the use of formal languages (1) to better define data 
transiting between components and (2) to verify and restrict 
parsers of those data transactions. As such, it suffers from the 
same limitation that has plagued other formal systems in that it 
must be “cooked in” at design. Protocols must implement a 
language that is context-free or lower on the Chomsky 
hierarchy, and parsers must be verified to correctly recognize 
and then parse that grammar.   

The merits of this approach are fairly obvious: namely, 
there are theoretical decidability bounds when languages are 
context-free or simpler, and correctly formatted messages may 
be deterministically recognized and (under slightly stronger 
technical requirements) unambiguously parsed. Unfortunately, 
it also requires that 

• the language be defined a priori and be restricted to 
specific Chomsky classes, 

• the language be complete for the application, or 
extensible while still remaining within the Chomsky 
class, 

• the parser be properly implemented and verified. 

The final bullet above is clearly difficult, bugs creep into 
even the smallest and simplest codes. However, the first two 
bullets are just as problematic in practice. From a programmer 
and application perspective, the language of protocols can 
never be too malleable. LANGSEC would paraphrase Einstein, 

“a language should be as complex as is necessary, but no more 
complex.” The protocol language must meet the application’s 
requirements and stay in a specific Chomsky class. 
Unfortunately, real-world systems are well known to suffer 
from creep. Even in the cases in which languages or protocols  
are well defined, esoteric, seldom-used, and likely insecure 
components frequently find their way into the code [2][3][4]. 

Even if a LANGSEC approach is taken for a particular 
project, there is still the problem of providing tools to 
programmers to facilitate proper development and testing. In 
truth, it may be impossible to secure systems post facto. On the 
other hand, analyzing existing systems through the lens of 
LANGSEC may provide insight into shortcomings and 
highlight the tools necessary to enable LANGSEC as a 
practical discipline in software development. 

In this paper, we discuss methods for inferring existing 
unknown grammars from examples. Such an approach may be 
useful, for example, when an unknown or poorly documented 
protocol is being examined or a subset of an established 
grammar is prohibitively complex to designate in advance in a 
generative fashion, but data containing examples of the target 
grammar (and perhaps counterexamples of sentences in the 
original protocol but not desired in the restricted version) can 
be obtained or filtered from existing data. Grammatical and 
language inference is a well-established field with decades of 
research. We do not present this document as a comprehensive 
survey of grammatical inference as a whole (readers may refer 
to [5] as a more complete reference). Rather, we focus on 
techniques and frameworks that we believe are applicable and 
useful to LANGSEC. In particular, a framework should be 
inferable, applicable, and map to the Chomsky hierarchy 
(Table 1). 

Inferable 
The framework should have a learning algorithm that takes 
input strings from examples, produces a grammar or similar 

structure, and has tractable complexity. 

Applicable 
Otherwise known as membership queries.  Given a string, can it 

be efficiently (polynomial time) determined if the string is a 
member of the target language? 

Map to 
Chomsky 

The framework should have classes or subclasses that map to 
the Chomsky hierarchy, thus allowing for the computational 

limiting argument mentioned previously.   

Table 1 Grammar framework requirements for LANGSEC. 
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The restrictions on inferability and applicability are obvious 
for real-world use. The final requirement is a key tenet of 
LANGSEC [1], and makes possible the application of the 
framework to real-world protocols. We may find that although 
a protocol is defined to be complex with respect to the 
Chomsky hierarchy, the vast majority of messages passed in 
the language fall into a simpler, easier-to-verify class. 

This document is organized as follows: in Section II, we 
provide an overview of learning models pertinent to 
grammatical inference. In Section III, we introduce the two 
most relevant non-Chomsky generative grammars we are 
aware of, pattern languages and EFSs, and some important 
subclasses of each. Section Error! Reference source not 
found. documents initial results of using pattern languages for 
learning weblog data and for fuzzing test cases. To close the 
document, we provide an overview of future work in Section 
V, and our conclusions and brief overall discussion are in 
Section Error! Reference source not found.. 

II. LEARNING  
This section provides the groundwork for the remainder of 

the paper. First, it is necessary to collect preliminary notation 
and assumptions. Then, we review the two main models of 
learning for formal languages: (1) learning in the limit 
(henceforth: “Gold-style”) and (2) probably approximately 
correct (PAC). It is important that both models be 
differentiated, because inference difficulty is determined not 
only by language complexity but by learning type. Where 
possible and appropriate, we call out potentially confusing 
overlaps of notation or lexicon. We once again remind the 
reader that this document merely introduces methods that we 
believe are useful to LANGSEC. Readers interested in more 
comprehensive resources may review [5], [6], and [7]. 

A. Preliminaries 
Notation among different grammatical inference methods 

can be frustratingly inconsistent.   We take the time to redefine 
notation for clarity and completeness of this reference. Much 
of the notation and definitions are borrowed from [8] and [9]. 

1) Sets, alphabets, languages, and strings 
If not otherwise specified, script notation refers to classes 

or sets (e.g., ��� whereas standard font indicates a singleton 
(e.g., �). Because languages can be referred to as singletons (a 
single language), results of generative grammars, or sets of 
strings, we use double-bar notation to indicate the amorphous 
standard (e.g., �� and to describe the proper context. 

Consider a finite alphabet � and a string � composed of a 
finite number of symbols taken from �. The empty string is 
denoted 	�
and 
��� �� are the set of all strings (including
	 ) 
and all strings of one or more character. A language � is a 
subset of ��(� 
 ��). For notational convenience, a language 
can also be represented as a function of its generative 
grammar. That is, ���� is the language generated by grammar �. (The difference is important, � is a set of strings, whereas � is a representation in a framework or function.) To avoid 
confusion, and as a reminder that order matters in strings and 

not in sets, we denote the length of a string � as ���, the length 
of a pattern � as ���, and the cardinality of a set � as ��.   

2) Recursive languages 
A class of languages � � ��� ��� � indexed by � 
 �� is a 

family of recursive (a.k.a. “decideable”) languages if there is a 
set of functions � � �� � � � � �!"

�# $#

���� %� � !  iff  � & �' . The index of a language need not be an integer. One 
could specify the index via a grammar or pattern for clarity, 
w.l.o.g. The distinction and differing notation between a class 
of languages (�� and the individual languages (�'� is best 
described as mathematical convenience. At times, we will 
refer to a class via set notation ��� and others via an indexed 
set of languages ���� �� � �. Language classes are most useful 
when we discuss results for a single language that may extend 
to further languages collected in a class. 

3) Texts and informants 
Now that we have sufficient notation to describe and 

categorize strings, it is important to discuss how those 
languages are presented to a learner. A target language is the 
language the learner is trying to learn. Positive examples are 
strings that are known to be in the target language. That is, 
given a target language �� define ��to be a set of all strings in � (�� � �(� & �")[10]. Negative examples are the natural 
complement, all strings other than the positive examples 
(�) � �� *
��). A complete presentation of language � is a 
(potentially infinite) set of positive and negative labeled 
examples. Formally, a complete presentation is an infinite 
sequence of strings and labels, ���� $��� ���� $��� � where  $ & � �!" , ��'�
% & �� $' � !" � ��, and ��'�
% & �� $' �  " ��).   

A positive presentation of a language � is precisely ��� the 
infinite set of strings that define � [9]. (For this definition, the 
label �$� is dropped, and instead we generate an infinite 
sequence of ���� ��� � " such that ��'�% & �" � �# ) Note that the 
definition is exhaustive; the positive presentation of language � is all strings (��� contained within the language ���.  
B. Inductive inference from positive examples 

Shapiro [11] defines a model inference problem as 
follows: “Given the ability to perform experiments in some 
unknown model +� find a finite set of hypotheses, true in +, 
that imply all true observational sentences.” That is, if given a 
set of outputs, can we identify the generating process?   

For the purposes of LANGSEC, inductive inference is best 
described via the definition of an inference machine 
[9][12][13].   

 
Definition 1 : (Inductive inference in the limit)  Assume 

a Turing Machine (or equivalent) +, called the inference 
machine.  + is presented with example strings from grammar � sequentially ���� ��� � � � ��' & ���, and at each iteration, 
generates hypotheses �,�� ,�� � � about the actual target 
grammar �.  If after some finite number -, ,' � ,.
(% / -, 
then we say that + has converged to ,. 0 ,1'.23 .

 
If, after a finite number of samples, + either terminates or 

settles on a single, unchanging hypothesis, then we can say 
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that + has converged. Note that the convergence of + does 
not indicate correctness of ,1'.23 .  If ,1'.23  represents the 
generative grammar for ���� ���� �, which we refer to as �, 
then + is said to have converged correctly. Clearly, to be 
polynomial-time learnable, hypothesis generation must be 
polynomial time in terms of the input data. 

Gold [13] defines inductive inference for formal languages 
as learning in the limit, and shows that it is theoretically 
possible to infer any indexed family of recursive languages 
from complete data.  Unfortunately, he also shows that not all 
families are inferable from positive presentations. Even 
regular languages fall into this latter class, and cannot be 
inferred from positive data alone. Angluin [9] shows that 
languages with specific thickness and elasticity properties are 
inferable from positive presentations. The specifics of 
thickness and elasticity are beyond the scope of this paper 
(loosely, they relate to the ability to find subsets of strings 
unique to a particular language within the class under 
consideration); however, with these notions, Angluin [9]  
introduced pattern languages, and showed that this structure is 
indeed inferable from positive data. We discuss pattern 
languages in detail in Section III.A.  

C. Probably Approximately Correct  
 The reader may note that the requirements for learning in 
the limit (inductive inference) are quite stringent and poorly 
suited to real-world inference. First, a learner must have access 
to all examples of a language (�� in its entirety). Second, the 
learner must converge on a hypothesis, and the final hypothesis 
must be correct �� & �425674 � (� & �����. Finally, the only 
requirement on the time within which the learner converges is 
that it be finite. PAC [14] learning relaxes the first two 
constraints by (1) sampling the positive and negative examples, 
(2) removing the requirement on exhaustive examples via 
probabilistic error bounds, and (3) in the most common 
formulation restricting the computational resources by 
demanding that the learner attain those bounds in polynomial 
time with respect to the various parameters of the learning task.  
PAC algorithms are parameterized by an error probability 8 
and a confidence probability 9. Whereas grammatical inference 
literature would refer to a subset of �� as a string (or word), 
PAC literature might refer to the subset as a concept. A 
concept class �:� is a non-empty set of concepts �: 
 ;<=�.  
In contrast to Gold-learning, PAC is presented with a subset of 
a complete presentation of strings. This presentation is most 
often “generated” via an example oracle, denoted >?��. The 
learner requests an example from the oracle, who responds in 
constant time with a random, labeled example @�''� $'A 
 ��� B�)�. In theory, it is possible that the oracle would return an 
infinite length example. Doing so would require infinite 
processing time from a polynomial-time learner. Therefore, we 
allow the learner to request an example no longer than C 
values by calling >?�C�.   
 The following definitions are primarily taken from [5], with 
references to [15] and [16] as well.   

Definition 2 : (D * EFFG
HIJFKHLMNM�  As in Definition 1, 
let � be the target grammar, O be the hypothesis grammar, and 

P be the distribution over strings ��.  For some 	 /  , O is an 	 -good hypothesis for �  if QRS@
T & ���� U ��O�A V 	 ,  
where U represents symmetric difference. 

 In plain language, Definition 2 can be summarized as 
follows: the probability of randomly drawing a string that is in 
either ����  or ��O� , but not in both is limited by 	 . (If a 
hypothesis is perfectly correct, ���� U ��O� � W.)

Definition 3 : (XFYIZF[N\YYI
X]^ * YL\_Z\`YL�  A class 
of grammars (or a concept class) � is said to be PAC-learnable 
if there exists an algorithm a that: 

• Given any grammar of size - , for any (probabilistic)    
distribution P over ��, for every 9 /   and 	 /  , if a is 
given access to >?�C� , C , - , 	 , and 9 , then with 
probability at least ! * 9, a outputs an 	 -good hypothesis 
with respect to �.   
• If a runs in polynomial time with respect to  �b, �c, ���, C, 
and -, then � is PAC-learnable.  

 
Definition 3 has two important components. First, algorithm a must have a polynomial-limited computation time in terms 
of the parameters. Second, the confidence parameter (9� is 
related to the probability that a will not output an 	-good 
hypothesis.  Colloquially, 	 is the accuracy of the hypothesis, 
and 9 is the probability that the algorithm will not find a 
hypothesis meeting that requirement. 

Definition 4 : (dFZMNMKLZdI
H\_GZLMMe
X]^
YL\_ZNZE�  
If the consistency problem for a class �:� of concepts �f�� � � � 
is gh-hard, assuming gh i jh� the class is not PAC-learnable 
[17] (Thm. 6.2.1).

 
D. Informant Learning and Consistency 

Section II.B discusses learning from positive examples and 
is often simply referred to as Gold-learning. If both positive 
and negative examples are presented to a learner, it is often 
called informant learning. For brevity, we omit a formal 
definition of informant learning. It is identical to Definition 1, 
with the additional constraint that strings are labeled as to their 
inclusion in the target language �.  Informant learning differs 
from PAC learning in that PAC is allowed to randomly sample 
input examples from both the positive and negative sets. 

A learner is said to be consistent if, using its current 
hypothesis, it can correctly identify string membership in a 
target language for all examples seen to that point. The Lange 
and Wiehagen (LW) [18] pattern inference algorithm 
discussed later in the paper learns inconsistently. At any given 
iteration, the current hypothesis may not correctly identify a 
previously seen example as a language member. Many 
learning algorithms cannot provide consistency, and 
consistency has important implications for PAC learning. 

Definition 5 : ( dFZMNMKLZdI�   Borrowing notation from 
Section II.A.2) a learner k
is said to be consistent if  ���� k� �! � (� & ��� ���� k� �  � (� & �)
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III. FRAMEWORKS 

A. Pattern Languages 
After Gold’s negative result [13] regarding the inductive 

inferability of even the simplest Chomsky classes from 
positive presentations of languages, interest in inference 
waned. The introduction of pattern languages by Angluin [19] 
as a framework that is inferable from positive presentations re-
ignited interest in the research.   

For much of Section III.A.1) we use results and notation 
from [20] due to clarity and conciseness. Higuera [5] is a 
gentle introduction to pattern languages, and Ng and 
Shinohara [21] provide a more recent reference that 
documents the evolution of learnability of pattern languages 
from 1980 to present. 

1) Overview 
A pattern language uses the same notation for alphabets 

and strings of Section II.A, with the addition of variables. The 
set of variables l � �T�� T�� � " is disjoint from the alphabet �l m � � 
W�. To prevent confusion, elements of � are called 
constants and elements of l are called variables.   

 
Definition 6 : (patterns / regular / k-var)  Given an 

alphabet of constants � and a set of variables l, a pattern ��� 
is a string comprising constants and variables ��� B l�. We 
define n
as the set of all patterns over � and l  �n ���� ��� � � 

 �� B l�.  A pattern � is regular if each variable 
in � appears exactly once. A pattern � is o-var regular if it is 
regular and contains at most o variables. 

 
Example: Let l � �T� p� q" be a set of variables and all other 
symbols be constant. Then, pattern Trpsqr is a regular 3-
variable pattern, but TT is not regular [22]. 

 
Definition 7 : (substitutions / extended patterns) [20] 

For a pattern �, denote a substitution as �t, in which we 
replace variable T�wherever it occurs with (non-null) string ��, 
variable T� with string ��, etc.  For clarity, substitution t can 
be denoted uv � wxyzy � x{z{ � � � x|z|}. A substitution is extended if 

null or if “erasing” substitutions are allowed (i.e., a variable 
may be removed from the pattern entirely without substituting 
a constant). 

 
 

Definition 8 : (pattern language) [18] For a pattern �, the 
language ���� is the set of all strings that can be obtained by 
applying Definition 7 to �.  

 
2) Inferability/applicability 

It is impossible to summarize the 30 years of research 
touched off by Angluin’s introduction of pattern languages 
[19] in a brief document. (We were unable to find what we 
would deem a comprehensive reference beyond [21].)  
Inference difficulty and language inclusion varies wildly for 
patterns depending on the number of variables, erasing 
variables, and pattern regularity. Each of these results is a 
reference in and of itself. For this work, we summarily ignore 
special cases of largely academic interest, such as restricting 
patterns to a handful of variables. Table 2 summarizes the 
classes of patterns we believe are most useful to LANGSEC.  
Clearly, the most tractable classes of pattern languages are 
regular patterns. Every regular pattern corresponds to a 
regular language1, and finite regular languages can be parsed 
in polynomial time by a finite state automaton (FSA).   

B. Elementary Formal Systems 

In an informal sense, regular expressions are analogous to 
the pattern languages. In a similar vein, Elementary Formal 
Systems (EFSs) may be compared with the programming 
language Prolog [27]. EFSs were originally introduced by 
Smullyan [28] in the early 1960s as a method for building a 
generative grammar for character strings. It remained fairly 
obscure until the discovery that it could be used as a unifying 
framework for grammars [29][22][30]. As stated in [31]: 

                                                           
1 The converse is not necessarily true [23].   

Language Category Gold-Stylea 
Inferable? 

Inferable in 
Polynomial 

Time? 

Polynomial-PAC 
Learnable? Membership Query Consistency Problem 

Pattern language ���� Yesb  [18]  Yesb [18] No gh - complete [9][19]  gh-complete 
Regular pattern  �~��� Yes [20] Yes  No [24] PTIMEc gh-complete 

Extended (erasing) �b��� No [25] � � � � 
Extended (erasing) regular  �b~��� Yes [20][22]  No No [24] � � 

Finite unions of patternse 

 n � ���� ���� �
��n� �
B��&n" ���� Yes [12][8][26]  Yes No 
No (membership in a 
single pattern is 
gh – 

complete) 
gh-complete 

Table 2 Pattern Language Categories 
 

a From positive data. 
b Lange and Wiehagen  present an algorithm that is not consistent, but does infer patterns. 
c Regular patterns produce regular languages, which are testable with deterministic finite automata. 
d For any regular pattern � and word �, checking whether � & ���� is decidable in ����� � ���� time. 
e Patterns are not closed under unions.  (The class of unions is richer than the class of pattern languages.) 
f Membership in a single pattern language is gh-complete. 
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Perhaps most importantly, EFS programs with specific 

structure can be categorized unambiguously into the Chomsky 
hierarchy, as will be discussed in the following section. 

1) Overview 

Much of the introductory material for EFSs in this section 
is taken from [10][30][31][32]. As in previous sections, 
assume a finite alphabet �, a finite set of variables l, and a set 
of patterns (n � ��� ��� �). For EFS, consider an additional 
finite set of symbols (� � �� �� ��� ��� � ), called predicate 
symbols, and assume that �, l� and � are all disjoint. For a 
pattern �� let ���� represent the (unique) set of variables 
appearing in �.  

 
Definition 9 : (ground patterns) Patterns are defined as usual 
(� & �� B l��), and a ground pattern contains no variables 
(�65��.� & ��). ( For clarity, �@�65��.�A � 
W�#)  

 
 

Definition 10 : (atomic formula / ground atoms) An atom is 
an expression of the form ����� � � �.�� where � is a predicate 
symbol with arity - and ��� � � �. are patterns. If all of the 
patterns are ground, then the atom is also ground. 

 
 

Definition 11 : (definite clause / substitution) Given atoms �� ��� � � �., a definite clause is:  � � ���� � �.. The atom � 
is the head of the clause, and ��� � � �. is the body. An atom �
can be denoted as a body-less clause �� ��. 
 
Just as in Definition 7, a substitution is denoted �t. For EFSs, 
a substitution passes into atoms and clauses. For an atom � � ����� � � �.�:    
 �t � ����t� � � �.t�.   
For a clause of atoms � � � � �: 
 �t � �t � ��t�� � ��t.   
As with standard patterns, erasing (	� substitutions are not 
allowed. 

 
 

Definition 12 : (ground clause / Herbrand base) A clause is 
called ground if all included atoms are ground. The set of all 
ground clauses is called the Herbrand base. 

 
 

Definition 13 : (Elementary Formal System) An EFS (�� is 
a finite set of constants, variables, and definite clauses �
 � ���l� ��.   

 
 

Definition 14 : (provable clauses / languages)  
A definite clause � is provable from an EFS � if � is obtained 
by finitely many applications of substitutions and modus 
ponens. This is denoted by: � � �.   

 
Given an EFS � and a predicate symbol � of arity !, the 
language ���� �� � �
�
 & ���
� � ����".   

 
 

Example 1 [32]: EFS for the language �r.s.f.
�- � !" 
� � 
� ��T�� T�� T�� ���rT�� sT�� fT�� � ��T�� T�� T��
��T�T�T�� � ��T�� T�� T�� � 

Where the first clause is the bodyless clause “initiating” the 
construction of the string, the second allows simultaneous 
extension of each component of the string, and the final is the 
“termination” and concatenation to the final single string. 

 
 

Example 2 [31] A pattern language ���� is equivalent to a 
(single-clause) EFS language ���� ��, with: � � ����� �" 

 
2) EFS languages: generating, inferring, and accepting. 

 It is important to note that EFSs act as a framework for 
generating languages and for testing for membership of a 
string within a language (also known as accepting). If one 
thinks of an EFS as a Prolog code, if presented with an input 
string, clauses are applied to the string where possible. If the 
result is an empty goal [32], then the string is a member of the 
EFS language. A full discussion of the theoretical basis and 
the methods of EFS use is beyond the scope of this paper, and 
we refer the reader to [32] and [31]. 

3) Classes of EFSs (and Chomsky) 

During our discussion of pattern languages in Section 
III.A, we introduced subclasses such as regular patterns and 
erasing patterns in a seemingly ad hoc manner. Pattern 
languages do not map directly to the Chomsky hierarchy 
(beyond the simple case of the regular pattern languages), and 
organizing them is difficult and unnatural. Subclasses of EFS, 
on the other hand, do map to Chomsky. Clearly, this 
categorization has implications for LANGSEC, and we take 
time to highlight important definitions and results. Those 
subclasses and the mappings are discussed in the following 
subsections.   

a) EFS preliminaries 

We borrow significant notation and definitions from [31].  
As before, ���� is the set of variables in pattern � and the 
length of a pattern is denoted by ���. The length of an atom is 
denoted ���T�� � � T.�� � ���� �
�� ��.�. The number of 
occurrences of variable T in pattern � is denoted ��T� ��, and 
it can be extended to occurrences of a variable in an atom �@T� ��T�� � � T.�A � ��T� ��� � �� ��T� �.�. 

b) EFS classes 

 Definitions 15–19 below show the requirements for 
specific subcases of EFSs. Classes are defined by the type of 

.. EFS’s work as grammars to generate languages, as automata to 
recognize languages, and as logic programs on character strings.   
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clause contained therein, and, therefore, the definitions are 
combined in a single block.

 
Definition 15 : (variable bounded) A clause � � ���� � �� 
is said to be variable bounded if ���� � ����� B �B ���.�.  
EFS � is variable bounded if all clauses are variable bounded. 

 
 

Definition 16 : (length bounded) A clause � � ���� � �� is 
said to be length bounded if ��t� � ���t� � �� ��.��.  EFS � is length bounded if all clauses are length bounded. 

 
 

Definition 17 : (simple clause) A simple clause is of the form ���� � ���T��� � � ���T��, where �� ��� � � �� are unary 
predicate symbols and T�� � � T� are mutually distinct 
variables appearing in � [31].  EFS � is simple if all clauses 
are simple. 

 
 

Definition 18 : (regular clause) A simple clause is regular if 
the pattern in its head is regular. An EFS � is regular if all its 
clauses are regular.

 
 

Definition 19 : (right/left linear clause) A regular clause is 
called right linear if the pattern of the head is T� for some � & ��.  A regular clause is left linear if the pattern of the 
head is �T for some � & ��.  An EFS � is right (left) linear if 
all its clauses are right (left) linear.

  
 Recall that, in its most concise description, any EFS is a 
logic program comprising a set of if-then rules that will define 
or parse a set of words [29]. Definitions 15–19 then define 
conditions on the structure of the logic program such that the 
output is necessarily restricted to a class in the Chomsky 
hierarchy.   

4) Inferability 

As is the case with pattern languages, the inferability of 
EFSs is an exercise in taxonomy. A small change in EFS 
structure or in terminology can lead to dramatically different 
results. Recall that Gold-style learning requires exhaustive 
(complete) examples of strings in the language, whereas 
polynomial-PAC learning  randomly samples a polynomial 
number of positive and negative examples. With that in mind, 
we informally summarize the two most relevant results in 
learnability of EFSs as follows. First, for Gold-style learning 
in the limit, finite languages that are at most context-sensitive 
complex can be learned by finite EFSs. Second, although it is 
possible to polynomially-PAC learn EFS models for 
languages, doing so requires additional constraints on the 
program. These restrictions and the results are presented 
below. Claims are presented without proof and cited for 
interested readers.  

 

Definition 20 [31][29] : (hereditary clause) A definite clause 
p���� � � �.� �




��@��� � � �4yA� ��@�4y� � � �4{A� � � �3��4��y��� � � �4�� is 
hereditary if for each � � !�� � $3, pattern �  is a substring of 
some pattern �'. An EFS is hereditary if all clauses are 
hereditary.

 
 

Definition 21 [31][29] : (LB-H-EFS�[� ¡�) Denote LB-H-
EFS�C� o� as the class of languages definable by a length-
bounded, hereditary EFS with at most C definite clauses such 
that the number of variable occurrences in the head of each 
clause is bounded by o
���T� ��� � V o � (T� (�¢72��.

 
 

Claim 1 [29][33] : LB-HEFS�C� o� are polynomial-PAC 
learnable for any �C � !� o � !�. 

 
 

Claim 2 [29] : for some C � ! 
(a) Any context-free language is in LB-H-EFS�C� ;�. 
(b) Any regular language is in LB-H-EFS�C� !�. 
(c) LB-H-EFS�C� o� contains a union of C pattern languages 
that are definable with at most o variable occurrences. 

 
Pertinent results from the preceding section are 

summarized in Table 3.  Once again, we advise care to the 
reader when interpreting these data because of overlapping or 
confusing lexicon and the subtle differences between learning 
methods. For example, regularity can refer to pattern 
languages, a class in the Chomskly hierarchy, and a class of 
EFS. Taking these three, all are very different. Gold’s famous 
result [13] showed that Chomsky-regular languages cannot be 
learned in the limit. However, regular pattern languages are 
orthogonal to the Chomsky hierarchy and can be learned in 
the limit. Meanwhile, regular EFSs correspond to context-free 
languages in the Chomsky hierarchy. We have attempted to 
provide a terse (and hopefully, useful) summary of research in 
the area, but even apparently trivial changes in the structure of 
the language and the learning model can produce significant 
differences in learnability.  

Language in 
Chomsky 
Hierarchy 

EFS 
Gold 

Inferable  
 

 (Hereditary)b 
polynomial-PAC 

Inferable 
 # of clauses � £a ga £ �C� o� 

recursively 
enumerable 

Variable 
bounded NO NO NO -- 

context-sensitive Length 
bounded NO   YES NO NOc 

context-free regular NO YES NO YES 
regular right/left linear NO YES NO YES 

a Upper limit on number of clauses in EFS. 
b Only hereditary EFSs are PAC inferable. All other EFS are non-PAC inferable.   
c Length-bounded EFSs are PAC learnable if we ignore computation time. 

Table 3  EFS to Chomsky Mapping 
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IV. RESULTS 
Our initial investigation into the use of formal language 

theory has focused on the use of pattern languages. Pattern 
languages are known to have good inferability results and are 
easy to implement, and they are a natural first step to the 
frameworks discussed in this paper. 

A. Weblog data  
As part of its computer network defense service provider 

operation, Army Research Laboratory has access to log data 
from production HTTP servers. These data are in the common 
log-file format [34], as illustrated in Example 3.   

 
Example 3 (common logfile format, URL underlined) 
127.0.0.1 user-identifier frank [10/Oct/2000:13:55:36 -
0700] "GET /apache_pb.gif.0" 200 2326 

 a These IP may represent NAT’ed networks. At the time of writing, we have not investigated. 

Table 4 summarizes the descriptive statistics and 
characteristics of the weblog data corpus.   

Total log entries ~ ¤#; � ! ¥ 
GET requests ~¦#§ � ! ¥ 

POST requests ~;#¨ � ! ¥ 
Unique source IP addressesa 34 
Logging duration / period ~ 6 days 4 hours 

a These IP may represent NAT’ed networks. At the time of writing, we have not investigated. 

Table 4 Weblog data corpus. 

We applied PATTERN_LEARNER (PL) [5] to the weblog 
data corpus.  (PL and Lange and LW) [18] are largely 
identical, although the write-ups are slightly different. We 
selected one arbitrarily to avoid confusion.) All prototypes are 
in Python, utilizing the PLY lexer [35] for string tokenization.  
For this section, the symbol alphabet is derived by tokenizing 
the strings into words (regex ‘\w+’) and then individual 
symbols (regex ‘.’). As such, the underlined URL of 
Example 3 would generate the token list: 
[(/),(apache_pb),(.),(gif)]. Tokenizing on words rather than 
individual characters reduces the number of symbols the 
algorithm must consider. Furthermore, it allows a richer and 
more reasonable comparison of strings; single-character 
differences no longer throw off string comparisons.  

All log entries are assumed to be normal user requests, and 
therefore the data are considered to be a positive presentation.  
We are not aware of any malicious “attacks” in the corpus.   

PL relies on the observation that the pattern can be no 
longer than the shortest string in the data-set. In this corpus, 
the smallest request was the root directory (“/”). When a 
pattern learner is applied to a large data-set with a min-length 
string of one character, the learned pattern is a single variable.  
(In our output, this would be denoted “_x0_”.)   

To avoid the uninteresting single-variable output, we 
batched URL data into smaller subsets. The corpus was first 
broken into POST and GET requests. Within each request type 
subset, we identified the set of root URLs. “Root” URLs are 
nothing more than the initial directory structure of a request, 
stripped of any additional parameters. Log entries were then 
grep’d from the overall corpus into root-specific batches.    

Table 5 demonstrates some hand-selected results for each 
request type. (Full results are available upon request.) URL’s 
have been rudimentarily anonymized; word-strings are 
mapped to random words of equal length, and HTTP-special 
characters are unchanged. This mapping preserves notional 
URL structure but hides URL specifics. (Unfortunately, some 
context is also lost. In many non-anonymized entries, one can 
immediately identify the service accessed and data passed in 
the request.) 

We admit without reservation that these results are simple 
and do not reflect even a partial grammar for HTTP. However, 
some interesting patterns do emerge. It is important to 
remember that by definition, PL cannot learn a pattern longer 
than the shortest string(s) in the input set. In fact, as defined, 
PL ignores all but the shortest set of input strings. Differences 
among strings in this set are discovered on a character-by-
character comparison, and they are recorded as pattern 
variables. As documented, neither PL nor LW performs any 
variable combining as a post-processing step, and it is possible 
that the output contain a series of neighboring pattern 
variables. 

  These facts are imperative for proper interpretation of 
Table 5. For example, P.1 does not end with a pattern variable.  
From the form of the pattern, it is fairly obvious that it is a 
request from a standard endpoint for different files with the 
same extension. For a set of data that was not a carefully 
crafted batch, it is possible that this pattern reflects only the 
shortest examples in the batch, and that longer examples are 
far different. P.2 shows a string that is most likely an endpoint 
request. As a result of our full-word lexing, the parameter of 
the URL is clearly a bang-separated tuple of three values.  
Finally, P.3 shows the aforementioned artifact of the learning 
algorithm. PL makes no effort to optimize pattern length, nor 
does it combine neighboring variables. P.3 has no repeating 
variables, and one could collect the variables into a single 
entry w.l.o.g. The bottom block of Table 5 shows that GET 
requests are similar. G.1 illustrates a long, highly structured 
request with numerous parameters. G.2, meanwhile, shows an 
obvious parameter/value pairing for the root URL endpoint. 
Both patterns are learned over a large number of log entries, 
and we can be confident that future requests will be similar. 

Regular patterns are the simplest of cases, and they do not 
precisely correspond to a grammar. However, assuming the 
corpus represents a positive presentation, the results do 
provide insight into the language(s) accepted by specific 
endpoints of HTTP server(s). If we assume that each root 
URL corresponds to a code-path, learned patterns may help 
identify known-good, or flag seemingly bad, requests. We 
discuss this further in the following subsection and in Section 
V. 

B. American Fuzzy Lop Test Cases 
American Fuzzy Lop (AFL) [36] is a code-fuzzing tool 

developed by Michal Zalewski and implemented in C.  It is 
fast, powerful, and has elements of both static analysis and 
standard black-box testing. When one has access to source 
code, AFL is able to use a modified compiler to inject control 
trampolines into a runtime.  Without source code, AFL can 
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also be started in pure black-box mode, with the expected loss 
of performance compared with instrumented code. AFL uses a  

 
set of heuristics for test-case generation [37], and it uses the 
instrumented binary to gauge and guide test-case coverage.  
During processing, test cases are stored as input files to the 
binary, in a hierarchical naming format that documents test-
case evolution. AFL generates the test cases, runs the binaries, 
and records any “interesting” inputs that lead to unexpected 
binary return states (hangs or crashes). As stated in AFL’s 
documentation: 

 
1) AFL and pattern languages 

 Test cases are generated iteratively, because AFL permutes 
previous inputs into new inputs. In general, the file-
modification operations are simple bit-level swaps, re-
orderings, or value substitutions. For pattern languages, we 
would expect these operations to appear as pattern variables.   
 In this subsection, we apply PL to the publicly available 
corpus of test cases for libjpeg on AFL’s website. (The 
corpus is publicly available, can be downloaded, and is static, 
thus providing a reproducible data-set for this paper.) Files are 
treated as raw binary and converted to hexadecimal characters 
using the *NIX “xxd” command. At times, we omit short-
length test inputs due to the uninterestingly small pattern 
languages that result. 
 For these data, and this section, we slightly modified our 
implementation of PL and denote the new version h�© . In 
Section A, we highlighted the fact that PL is restricted by the 
min-length input strings in the input set. We make the 
following change: assume that the input set has + strings, and 
one minimum length string of length ª.  h�© selects the first ª 
characters of all input strings and treats this as the set of min-
length strings. This maintains the pattern length, but avoids 
single-string outputs. For clarity, h�©  also collects, combines, 
and renumbers consecutive pattern variables where possible. 
 Table 6 shows groups of test cases derived from the same 
source-case (captured in AFL in the command line “src” 
field). With the inferred pattern, it is easy to immediately 

identify the changes in the byte-strings over the entire 
generated corpus. In cases C.2 and C.3, note the repeated 
variables leading to non-regular pattern languages. Substrings 
have intentionally or unintentionally been mirrored throughout 
the test set.   
 Numerous other researchers have focused on test-set 
coverage and the use of expressive grammars for test-set 
generation, and we make no claims as to the efficacy of our 
work. However, this approach is a hybrid, low-effort blend of 
the two techniques that we believe is worthy of future 
research. We discuss it further in Section V.   

2) AFL and language discovery 

We observe that AFL is performing language discovery in 
a randomized fashion, and  Zalewski alludes to this in [38]. In 
this reference, AFL is used to test the common image library 
libjpeg. Rather than initializing the analysis with one or more 
jpeg images, fuzzing is started on file containing the text 
string “hello.” By virtue of its goal of exercising code paths 
in the binary, as AFL iterates, it begins to generate test cases 
that (slowly) begin to reflect the JPEG file format. Zalewski 
[38] refers to this as “pulling jpegs out of thin air.” Because 
AFL has no knowledge of the language “jpeg,” it is using 
libjpeg as a recognizer and searching ��. Learning “jpeg” is a 
byproduct of AFL’s actual goal: finding those sub-languages 
that lead to unexpected program behavior. Put another way, if 
libjpeg were implemented perfectly, AFL would discover no 
faults. However, in its efforts to exercise all code paths, it 
would develop larger and larger test-set coverage of the 
language “jpeg.”  

V. FUTURE WORK 
Admittedly, our results represent only a cursory 

investigation into the frameworks described in this paper. The 
core of this work is designed to act as a literature search for 
grammatical inference and as an introduction and less-
confusing reference. In the following subsections, we provide 
a brief overview of areas of interest and future work. 

A. Learning with Elementary Formal Systems 
EFSs are covered in Section III.B of this paper. At the time 

of writing, we have not implemented any EFS learning 
algorithms. Research in the area has waned, and we note that 

 

Row Pattern 
Vars POST Requests (Anonymized URLs) # of Samples 

P.1 1 /7NWS/XBPD07F/HXZRT/6BR/PR9M/_x0_.Q7OJ 83199 
P.2 3 /0YDO8J33LKSC/DKWPZJ/QCSY1BWNRIG65;R9LZ64B6GI=_x0_!_x1_!_x2_ 2366 
P.3 4 /5HEZP8EKVK3R9RGF9D_x0__x1__x2__x3_ 204950 

    

Row Pattern 
Vars POST Requests (Anonymized URLs) # of Samples 

G.1 17 /KPGF/7OH0EHB1.HE9?id=_x0_%F95X4L2%_x1__x2__x3__x4_'_x5__x6_%_x7_%_x8__x2__x3__x11_'_x12__
x6_%_x14_%_x15_='_x16_' 6464 

G.2 4 /89TM/8J7MNN1/3H6WH/H751AQ57?_t=cd&33XKQ5I6=_x0_&IMK6XIR3=_x1_&AELAN=_x2_&COV=en&8
9S8A2JUFSVXE=_x3_ 3096 

  Table 5 Pattern Learning Weblog Data (pattern variables = “_x<integer>_”)  

As a side result of the fuzzing process, the tool creates a small, 
self-contained corpus of interesting test cases. These are extremely 

useful for seeding other, labor- or resource-intensive testing regimes… 
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the applied EFS inference studies of Arikawa [29] and Miyano 
[24] were performed in the early 1990s and 2000s, 
respectively. Neither had access to the ubiquitous and high-
performance computation available today, and we intend to 
leverage computational resources to apply their experimental 
techniques to our own data. 

B. Hybrid Fuzzing/Analysis/Grammar Inference  

In Section IV.B, we discussed the use of pattern languages 
with AFL. Previously, we have mentioned our hypothesis that 
although many contemporary programs are thought to accept a 
single language ���, in actuality, they accept a union of 
finitely many sub-languages � � ���� ��� � � ���. Moreover, 
we believe that those sub-languages often correspond to 
specific code paths in the target binary.   

Our plan is to leverage publicly available tools including 
clang [39] for LLVM [40] and the aforementioned AFL [36] 
to tie language learning to code paths. Although it is likely 
impossible to exhaustively enumerate learnable examples, it 
may be possible to learn enough about sub-language grammar 
to restrict inputs. By tying grammars to code paths, we hope to 
be able to restrict inputs to those paths that are assumed (or 
known) safe. Fracturing of a grammar into sub-grammars that 
have identifiable execution chains will allow monolithic 
binaries to be leveraged and still avoid components that are 
apocryphal, old, esoteric, and likely unsafe [41].      

C.  Other Frameworks 
Pattern languages and EFSs are certainly not the only two 

grammatical inference frameworks available. Notably, some 
recent works that focused on natural language processing 
(Clark [42][43][44]) show promise for grammatical inference. 
We plan to evaluate and compare these methods with those 
mentioned in this paper. 

VI. CONCLUSION/DISCUSSION 

 In this paper, we have provided an overview of pattern 
languages and EFSs and their inferability. We have attempted 
to collect and organize results, de-conflict notation, and 
highlight the points most germane to LANGSEC. EFSs map 
directly to the Chomsky hierarchy and can be thought of as a 
Prolog-like programming language. Pattern languages, on the 
other hand, resemble regular expressions, are orthogonal to the 
Chomsky hierarchy, and are much easier to implement. Both 

frameworks have subclasses that are learnable in the limit or 
under PAC constraints. Our literature search and initial results 
end with the unavoidable conclusion that grammatical 
inference is hard and that learning grammar for even the 
simplest classes is theoretically and computationally difficult.  
However, LANGSEC suffers from similar difficulties, only 
the price is paid at design time. To reap the benefits of 
LANGSEC’s approach, programs require Chomsky-limited 
protocols and parsers. Grammatical inference and the 
techniques presented here offer the promise of using 
LANGSEC after the fact. Pattern languages and EFSs have 
potential for learning, segmenting, and better understanding 
grammars.   
 Our initial results with weblog data and fuzzer input are 
encouraging enough to motivate continued research in this 
area. We believe that additional work with these frameworks 
will lead to tools to help secure existing systems and to assist 
during the design of new ones.   
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