
Grammatical Inference and Language Frameworks
for LANGSEC

Dr. Kerry N. Wood
U.S. Army Research Laboratory

Adelphi, MD
kerry.n.wood.ctr@mail.mil

Dr. Richard E. Harang
U.S. Army Research Laboratory

Adelphi, MD
richard.e.harang.civ@mail.mil

Abstract—Formal Language Theory for Security
(LANGSEC) has proposed that formal language theory and
grammars be used to define and secure protocols and parsers.
The assumption is that by restricting languages to lower levels of
the Chomsky hierarchy, it is easier to control and verify parser
code. In this paper, we investigate an alternative approach to
inferring grammars via pattern languages and elementary formal
system frameworks. We summarize inferability results for
subclasses of both frameworks and discuss how they map to the
Chomsky hierarchy. Finally, we present initial results of pattern
language learning on logged HTTP sessions and suggest future
areas of research.

Keywords—grammatical inference, LANGSEC, language
identification, pattern language, elementary formal system (EFS)

I. INTRODUCTION/MOTIVATION
In [1], Sassaman et al. propose the use of formal language

theory for security (LANGSEC). LANGSEC has primarily
focused on the use of formal languages (1) to better define data
transiting between components and (2) to verify and restrict
parsers of those data transactions. As such, it suffers from the
same limitation that has plagued other formal systems in that it
must be “cooked in” at design. Protocols must implement a
language that is context-free or lower on the Chomsky
hierarchy, and parsers must be verified to correctly recognize
and then parse that grammar.

The merits of this approach are fairly obvious: namely,
there are theoretical decidability bounds when languages are
context-free or simpler, and correctly formatted messages may
be deterministically recognized and (under slightly stronger
technical requirements) unambiguously parsed. Unfortunately,
it also requires that

• the language be defined a priori and be restricted to
specific Chomsky classes,

• the language be complete for the application, or
extensible while still remaining within the Chomsky
class,

• the parser be properly implemented and verified.

The final bullet above is clearly difficult, bugs creep into
even the smallest and simplest codes. However, the first two
bullets are just as problematic in practice. From a programmer
and application perspective, the language of protocols can
never be too malleable. LANGSEC would paraphrase Einstein,

“a language should be as complex as is necessary, but no more
complex.” The protocol language must meet the application’s
requirements and stay in a specific Chomsky class.
Unfortunately, real-world systems are well known to suffer
from creep. Even in the cases in which languages or protocols
are well defined, esoteric, seldom-used, and likely insecure
components frequently find their way into the code [2][3][4].

Even if a LANGSEC approach is taken for a particular
project, there is still the problem of providing tools to
programmers to facilitate proper development and testing. In
truth, it may be impossible to secure systems post facto. On the
other hand, analyzing existing systems through the lens of
LANGSEC may provide insight into shortcomings and
highlight the tools necessary to enable LANGSEC as a
practical discipline in software development.

In this paper, we discuss methods for inferring existing
unknown grammars from examples. Such an approach may be
useful, for example, when an unknown or poorly documented
protocol is being examined or a subset of an established
grammar is prohibitively complex to designate in advance in a
generative fashion, but data containing examples of the target
grammar (and perhaps counterexamples of sentences in the
original protocol but not desired in the restricted version) can
be obtained or filtered from existing data. Grammatical and
language inference is a well-established field with decades of
research. We do not present this document as a comprehensive
survey of grammatical inference as a whole (readers may refer
to [5] as a more complete reference). Rather, we focus on
techniques and frameworks that we believe are applicable and
useful to LANGSEC. In particular, a framework should be
inferable, applicable, and map to the Chomsky hierarchy
(Table 1).

Inferable
The framework should have a learning algorithm that takes
input strings from examples, produces a grammar or similar

structure, and has tractable complexity.

Applicable
Otherwise known as membership queries. Given a string, can it

be efficiently (polynomial time) determined if the string is a
member of the target language?

Map to
Chomsky

The framework should have classes or subclasses that map to
the Chomsky hierarchy, thus allowing for the computational

limiting argument mentioned previously.

Table 1 Grammar framework requirements for LANGSEC.

2015 IEEE CS Security and Privacy Workshops

© 2015, Dr. Kerry N. Wood. Under license to IEEE.

DOI 10.1109/SPW.2015.17

88

The restrictions on inferability and applicability are obvious
for real-world use. The final requirement is a key tenet of
LANGSEC [1], and makes possible the application of the
framework to real-world protocols. We may find that although
a protocol is defined to be complex with respect to the
Chomsky hierarchy, the vast majority of messages passed in
the language fall into a simpler, easier-to-verify class.

This document is organized as follows: in Section II, we
provide an overview of learning models pertinent to
grammatical inference. In Section III, we introduce the two
most relevant non-Chomsky generative grammars we are
aware of, pattern languages and EFSs, and some important
subclasses of each. Section Error! Reference source not
found. documents initial results of using pattern languages for
learning weblog data and for fuzzing test cases. To close the
document, we provide an overview of future work in Section
V, and our conclusions and brief overall discussion are in
Section Error! Reference source not found..

II. LEARNING
This section provides the groundwork for the remainder of

the paper. First, it is necessary to collect preliminary notation
and assumptions. Then, we review the two main models of
learning for formal languages: (1) learning in the limit
(henceforth: “Gold-style”) and (2) probably approximately
correct (PAC). It is important that both models be
differentiated, because inference difficulty is determined not
only by language complexity but by learning type. Where
possible and appropriate, we call out potentially confusing
overlaps of notation or lexicon. We once again remind the
reader that this document merely introduces methods that we
believe are useful to LANGSEC. Readers interested in more
comprehensive resources may review [5], [6], and [7].

A. Preliminaries
Notation among different grammatical inference methods

can be frustratingly inconsistent. We take the time to redefine
notation for clarity and completeness of this reference. Much
of the notation and definitions are borrowed from [8] and [9].

1) Sets, alphabets, languages, and strings
If not otherwise specified, script notation refers to classes

or sets (e.g., ��� whereas standard font indicates a singleton
(e.g., �). Because languages can be referred to as singletons (a
single language), results of generative grammars, or sets of
strings, we use double-bar notation to indicate the amorphous
standard (e.g., �� and to describe the proper context.

Consider a finite alphabet � and a string � composed of a
finite number of symbols taken from �. The empty string is
denoted 	�
and
��� �� are the set of all strings (including
)
and all strings of one or more character. A language � is a
subset of ��(�
 ��). For notational convenience, a language
can also be represented as a function of its generative
grammar. That is, ���� is the language generated by grammar �. (The difference is important, � is a set of strings, whereas � is a representation in a framework or function.) To avoid
confusion, and as a reminder that order matters in strings and

not in sets, we denote the length of a string � as ���, the length
of a pattern � as ���, and the cardinality of a set � as ��.

2) Recursive languages
A class of languages � � ��� ��� � indexed by �
 �� is a

family of recursive (a.k.a. “decideable”) languages if there is a
set of functions � � �� � � � � �!"

�# $#

���� %� � ! iff � & �' . The index of a language need not be an integer. One
could specify the index via a grammar or pattern for clarity,
w.l.o.g. The distinction and differing notation between a class
of languages (�� and the individual languages (�'� is best
described as mathematical convenience. At times, we will
refer to a class via set notation ��� and others via an indexed
set of languages ���� �� � �. Language classes are most useful
when we discuss results for a single language that may extend
to further languages collected in a class.

3) Texts and informants
Now that we have sufficient notation to describe and

categorize strings, it is important to discuss how those
languages are presented to a learner. A target language is the
language the learner is trying to learn. Positive examples are
strings that are known to be in the target language. That is,
given a target language �� define ��to be a set of all strings in � (�� � �(� & �")[10]. Negative examples are the natural
complement, all strings other than the positive examples
(�) � �� *
��). A complete presentation of language � is a
(potentially infinite) set of positive and negative labeled
examples. Formally, a complete presentation is an infinite
sequence of strings and labels, ���� $��� ���� $��� � where $ & � �!" , ��'�
% & �� $' � !" � ��, and ��'�
% & �� $' � " ��).

A positive presentation of a language � is precisely ��� the
infinite set of strings that define � [9]. (For this definition, the
label �$� is dropped, and instead we generate an infinite
sequence of ���� ��� � " such that ��'�% & �" � �#) Note that the
definition is exhaustive; the positive presentation of language � is all strings (��� contained within the language ���.
B. Inductive inference from positive examples

Shapiro [11] defines a model inference problem as
follows: “Given the ability to perform experiments in some
unknown model +� find a finite set of hypotheses, true in +,
that imply all true observational sentences.” That is, if given a
set of outputs, can we identify the generating process?

For the purposes of LANGSEC, inductive inference is best
described via the definition of an inference machine
[9][12][13].

Definition 1 : (Inductive inference in the limit) Assume

a Turing Machine (or equivalent) +, called the inference
machine. + is presented with example strings from grammar � sequentially ���� ��� � � � ��' & ���, and at each iteration,
generates hypotheses �,�� ,�� � � about the actual target
grammar �. If after some finite number -, ,' � ,.
(% / -,
then we say that + has converged to ,. 0 ,1'.23 .

If, after a finite number of samples, + either terminates or

settles on a single, unchanging hypothesis, then we can say

89

that + has converged. Note that the convergence of + does
not indicate correctness of ,1'.23 . If ,1'.23 represents the
generative grammar for ���� ���� �, which we refer to as �,
then + is said to have converged correctly. Clearly, to be
polynomial-time learnable, hypothesis generation must be
polynomial time in terms of the input data.

Gold [13] defines inductive inference for formal languages
as learning in the limit, and shows that it is theoretically
possible to infer any indexed family of recursive languages
from complete data. Unfortunately, he also shows that not all
families are inferable from positive presentations. Even
regular languages fall into this latter class, and cannot be
inferred from positive data alone. Angluin [9] shows that
languages with specific thickness and elasticity properties are
inferable from positive presentations. The specifics of
thickness and elasticity are beyond the scope of this paper
(loosely, they relate to the ability to find subsets of strings
unique to a particular language within the class under
consideration); however, with these notions, Angluin [9]
introduced pattern languages, and showed that this structure is
indeed inferable from positive data. We discuss pattern
languages in detail in Section III.A.

C. Probably Approximately Correct
 The reader may note that the requirements for learning in
the limit (inductive inference) are quite stringent and poorly
suited to real-world inference. First, a learner must have access
to all examples of a language (�� in its entirety). Second, the
learner must converge on a hypothesis, and the final hypothesis
must be correct �� & �425674 � (� & �����. Finally, the only
requirement on the time within which the learner converges is
that it be finite. PAC [14] learning relaxes the first two
constraints by (1) sampling the positive and negative examples,
(2) removing the requirement on exhaustive examples via
probabilistic error bounds, and (3) in the most common
formulation restricting the computational resources by
demanding that the learner attain those bounds in polynomial
time with respect to the various parameters of the learning task.
PAC algorithms are parameterized by an error probability 8
and a confidence probability 9. Whereas grammatical inference
literature would refer to a subset of �� as a string (or word),
PAC literature might refer to the subset as a concept. A
concept class �:� is a non-empty set of concepts �:
 ;<=�.
In contrast to Gold-learning, PAC is presented with a subset of
a complete presentation of strings. This presentation is most
often “generated” via an example oracle, denoted >?��. The
learner requests an example from the oracle, who responds in
constant time with a random, labeled example @�''� $'A
 ��� B�)�. In theory, it is possible that the oracle would return an
infinite length example. Doing so would require infinite
processing time from a polynomial-time learner. Therefore, we
allow the learner to request an example no longer than C
values by calling >?�C�.
 The following definitions are primarily taken from [5], with
references to [15] and [16] as well.

Definition 2 : (D * EFFG
HIJFKHLMNM� As in Definition 1,
let � be the target grammar, O be the hypothesis grammar, and

P be the distribution over strings ��. For some 	 / , O is an 	 -good hypothesis for � if QRS@
T & ���� U ��O�A V 	 ,
where U represents symmetric difference.

 In plain language, Definition 2 can be summarized as
follows: the probability of randomly drawing a string that is in
either ���� or ��O� , but not in both is limited by 	 . (If a
hypothesis is perfectly correct, ���� U ��O� � W.)

Definition 3 : (XFYIZF[N\YYI
X]^ * YL_Z\`YL� A class
of grammars (or a concept class) � is said to be PAC-learnable
if there exists an algorithm a that:

• Given any grammar of size - , for any (probabilistic)
distribution P over ��, for every 9 / and 	 / , if a is
given access to >?�C� , C , - , 	 , and 9 , then with
probability at least ! * 9, a outputs an 	 -good hypothesis
with respect to �.
• If a runs in polynomial time with respect to �b, �c, ���, C,
and -, then � is PAC-learnable.

Definition 3 has two important components. First, algorithm a must have a polynomial-limited computation time in terms
of the parameters. Second, the confidence parameter (9� is
related to the probability that a will not output an 	-good
hypothesis. Colloquially, 	 is the accuracy of the hypothesis,
and 9 is the probability that the algorithm will not find a
hypothesis meeting that requirement.

Definition 4 : (dFZMNMKLZdI
H_GZLMMe
X]^
YL_ZNZE�
If the consistency problem for a class �:� of concepts �f�� � � �
is gh-hard, assuming gh i jh� the class is not PAC-learnable
[17] (Thm. 6.2.1).

D. Informant Learning and Consistency

Section II.B discusses learning from positive examples and
is often simply referred to as Gold-learning. If both positive
and negative examples are presented to a learner, it is often
called informant learning. For brevity, we omit a formal
definition of informant learning. It is identical to Definition 1,
with the additional constraint that strings are labeled as to their
inclusion in the target language �. Informant learning differs
from PAC learning in that PAC is allowed to randomly sample
input examples from both the positive and negative sets.

A learner is said to be consistent if, using its current
hypothesis, it can correctly identify string membership in a
target language for all examples seen to that point. The Lange
and Wiehagen (LW) [18] pattern inference algorithm
discussed later in the paper learns inconsistently. At any given
iteration, the current hypothesis may not correctly identify a
previously seen example as a language member. Many
learning algorithms cannot provide consistency, and
consistency has important implications for PAC learning.

Definition 5 : (dFZMNMKLZdI� Borrowing notation from
Section II.A.2) a learner k
is said to be consistent if ���� k� �! � (� & ��� ���� k� � � (� & �)

90

III. FRAMEWORKS

A. Pattern Languages
After Gold’s negative result [13] regarding the inductive

inferability of even the simplest Chomsky classes from
positive presentations of languages, interest in inference
waned. The introduction of pattern languages by Angluin [19]
as a framework that is inferable from positive presentations re-
ignited interest in the research.

For much of Section III.A.1) we use results and notation
from [20] due to clarity and conciseness. Higuera [5] is a
gentle introduction to pattern languages, and Ng and
Shinohara [21] provide a more recent reference that
documents the evolution of learnability of pattern languages
from 1980 to present.

1) Overview
A pattern language uses the same notation for alphabets

and strings of Section II.A, with the addition of variables. The
set of variables l � �T�� T�� � " is disjoint from the alphabet �l m � �
W�. To prevent confusion, elements of � are called
constants and elements of l are called variables.

Definition 6 : (patterns / regular / k-var) Given an

alphabet of constants � and a set of variables l, a pattern ���
is a string comprising constants and variables ��� B l�. We
define n
as the set of all patterns over � and l �n ���� ��� � �

 �� B l�. A pattern � is regular if each variable
in � appears exactly once. A pattern � is o-var regular if it is
regular and contains at most o variables.

Example: Let l � �T� p� q" be a set of variables and all other
symbols be constant. Then, pattern Trpsqr is a regular 3-
variable pattern, but TT is not regular [22].

Definition 7 : (substitutions / extended patterns) [20]

For a pattern �, denote a substitution as �t, in which we
replace variable T�wherever it occurs with (non-null) string ��,
variable T� with string ��, etc. For clarity, substitution t can
be denoted uv � wxyzy � x{z{ � � � x|z|}. A substitution is extended if

null or if “erasing” substitutions are allowed (i.e., a variable
may be removed from the pattern entirely without substituting
a constant).

Definition 8 : (pattern language) [18] For a pattern �, the
language ���� is the set of all strings that can be obtained by
applying Definition 7 to �.

2) Inferability/applicability

It is impossible to summarize the 30 years of research
touched off by Angluin’s introduction of pattern languages
[19] in a brief document. (We were unable to find what we
would deem a comprehensive reference beyond [21].)
Inference difficulty and language inclusion varies wildly for
patterns depending on the number of variables, erasing
variables, and pattern regularity. Each of these results is a
reference in and of itself. For this work, we summarily ignore
special cases of largely academic interest, such as restricting
patterns to a handful of variables. Table 2 summarizes the
classes of patterns we believe are most useful to LANGSEC.
Clearly, the most tractable classes of pattern languages are
regular patterns. Every regular pattern corresponds to a
regular language1, and finite regular languages can be parsed
in polynomial time by a finite state automaton (FSA).

B. Elementary Formal Systems

In an informal sense, regular expressions are analogous to
the pattern languages. In a similar vein, Elementary Formal
Systems (EFSs) may be compared with the programming
language Prolog [27]. EFSs were originally introduced by
Smullyan [28] in the early 1960s as a method for building a
generative grammar for character strings. It remained fairly
obscure until the discovery that it could be used as a unifying
framework for grammars [29][22][30]. As stated in [31]:

1 The converse is not necessarily true [23].

Language Category Gold-Stylea
Inferable?

Inferable in
Polynomial

Time?

Polynomial-PAC
Learnable? Membership Query Consistency Problem

Pattern language ���� Yesb [18] Yesb [18] No gh - complete [9][19] gh-complete
Regular pattern �~��� Yes [20] Yes No [24] PTIMEc gh-complete

Extended (erasing) �b��� No [25] � � � �
Extended (erasing) regular �b~��� Yes [20][22] No No [24] � �

Finite unions of patternse

 n � ���� ���� �
��n� �
B��&n" ���� Yes [12][8][26] Yes No
No (membership in a
single pattern is
gh –

complete)
gh-complete

Table 2 Pattern Language Categories

a From positive data.
b Lange and Wiehagen present an algorithm that is not consistent, but does infer patterns.
c Regular patterns produce regular languages, which are testable with deterministic finite automata.
d For any regular pattern � and word �, checking whether � & ���� is decidable in ����� � ���� time.
e Patterns are not closed under unions. (The class of unions is richer than the class of pattern languages.)
f Membership in a single pattern language is gh-complete.

91

Perhaps most importantly, EFS programs with specific

structure can be categorized unambiguously into the Chomsky
hierarchy, as will be discussed in the following section.

1) Overview

Much of the introductory material for EFSs in this section
is taken from [10][30][31][32]. As in previous sections,
assume a finite alphabet �, a finite set of variables l, and a set
of patterns (n � ��� ��� �). For EFS, consider an additional
finite set of symbols (� � �� �� ��� ��� �), called predicate
symbols, and assume that �, l� and � are all disjoint. For a
pattern �� let ���� represent the (unique) set of variables
appearing in �.

Definition 9 : (ground patterns) Patterns are defined as usual
(� & �� B l��), and a ground pattern contains no variables
(�65��.� & ��). (For clarity, �@�65��.�A �
W�#)

Definition 10 : (atomic formula / ground atoms) An atom is
an expression of the form ����� � � �.�� where � is a predicate
symbol with arity - and ��� � � �. are patterns. If all of the
patterns are ground, then the atom is also ground.

Definition 11 : (definite clause / substitution) Given atoms �� ��� � � �., a definite clause is: � � ���� � �.. The atom �
is the head of the clause, and ��� � � �. is the body. An atom �
can be denoted as a body-less clause �� ��.

Just as in Definition 7, a substitution is denoted �t. For EFSs,
a substitution passes into atoms and clauses. For an atom � � ����� � � �.�:
 �t � ����t� � � �.t�.
For a clause of atoms � � � � �:
 �t � �t � ��t�� � ��t.
As with standard patterns, erasing (� substitutions are not
allowed.

Definition 12 : (ground clause / Herbrand base) A clause is
called ground if all included atoms are ground. The set of all
ground clauses is called the Herbrand base.

Definition 13 : (Elementary Formal System) An EFS (�� is
a finite set of constants, variables, and definite clauses �
 � ���l� ��.

Definition 14 : (provable clauses / languages)
A definite clause � is provable from an EFS � if � is obtained
by finitely many applications of substitutions and modus
ponens. This is denoted by: � � �.

Given an EFS � and a predicate symbol � of arity !, the
language ���� �� � �
�
 & ���
� � ����".

Example 1 [32]: EFS for the language �r.s.f.
�- � !"
� �
� ��T�� T�� T�� ���rT�� sT�� fT�� � ��T�� T�� T��
��T�T�T�� � ��T�� T�� T�� �

Where the first clause is the bodyless clause “initiating” the
construction of the string, the second allows simultaneous
extension of each component of the string, and the final is the
“termination” and concatenation to the final single string.

Example 2 [31] A pattern language ���� is equivalent to a
(single-clause) EFS language ���� ��, with: � � ����� �"

2) EFS languages: generating, inferring, and accepting.

 It is important to note that EFSs act as a framework for
generating languages and for testing for membership of a
string within a language (also known as accepting). If one
thinks of an EFS as a Prolog code, if presented with an input
string, clauses are applied to the string where possible. If the
result is an empty goal [32], then the string is a member of the
EFS language. A full discussion of the theoretical basis and
the methods of EFS use is beyond the scope of this paper, and
we refer the reader to [32] and [31].

3) Classes of EFSs (and Chomsky)

During our discussion of pattern languages in Section
III.A, we introduced subclasses such as regular patterns and
erasing patterns in a seemingly ad hoc manner. Pattern
languages do not map directly to the Chomsky hierarchy
(beyond the simple case of the regular pattern languages), and
organizing them is difficult and unnatural. Subclasses of EFS,
on the other hand, do map to Chomsky. Clearly, this
categorization has implications for LANGSEC, and we take
time to highlight important definitions and results. Those
subclasses and the mappings are discussed in the following
subsections.

a) EFS preliminaries

We borrow significant notation and definitions from [31].
As before, ���� is the set of variables in pattern � and the
length of a pattern is denoted by ���. The length of an atom is
denoted ���T�� � � T.�� � ���� �
�� ��.�. The number of
occurrences of variable T in pattern � is denoted ��T� ��, and
it can be extended to occurrences of a variable in an atom �@T� ��T�� � � T.�A � ��T� ��� � �� ��T� �.�.

b) EFS classes

 Definitions 15–19 below show the requirements for
specific subcases of EFSs. Classes are defined by the type of

.. EFS’s work as grammars to generate languages, as automata to
recognize languages, and as logic programs on character strings.

92

clause contained therein, and, therefore, the definitions are
combined in a single block.

Definition 15 : (variable bounded) A clause � � ���� � ��
is said to be variable bounded if ���� � ����� B �B ���.�.
EFS � is variable bounded if all clauses are variable bounded.

Definition 16 : (length bounded) A clause � � ���� � �� is
said to be length bounded if ��t� � ���t� � �� ��.��. EFS � is length bounded if all clauses are length bounded.

Definition 17 : (simple clause) A simple clause is of the form ���� � ���T��� � � ���T��, where �� ��� � � �� are unary
predicate symbols and T�� � � T� are mutually distinct
variables appearing in � [31]. EFS � is simple if all clauses
are simple.

Definition 18 : (regular clause) A simple clause is regular if
the pattern in its head is regular. An EFS � is regular if all its
clauses are regular.

Definition 19 : (right/left linear clause) A regular clause is
called right linear if the pattern of the head is T� for some � & ��. A regular clause is left linear if the pattern of the
head is �T for some � & ��. An EFS � is right (left) linear if
all its clauses are right (left) linear.

 Recall that, in its most concise description, any EFS is a
logic program comprising a set of if-then rules that will define
or parse a set of words [29]. Definitions 15–19 then define
conditions on the structure of the logic program such that the
output is necessarily restricted to a class in the Chomsky
hierarchy.

4) Inferability

As is the case with pattern languages, the inferability of
EFSs is an exercise in taxonomy. A small change in EFS
structure or in terminology can lead to dramatically different
results. Recall that Gold-style learning requires exhaustive
(complete) examples of strings in the language, whereas
polynomial-PAC learning randomly samples a polynomial
number of positive and negative examples. With that in mind,
we informally summarize the two most relevant results in
learnability of EFSs as follows. First, for Gold-style learning
in the limit, finite languages that are at most context-sensitive
complex can be learned by finite EFSs. Second, although it is
possible to polynomially-PAC learn EFS models for
languages, doing so requires additional constraints on the
program. These restrictions and the results are presented
below. Claims are presented without proof and cited for
interested readers.

Definition 20 [31][29] : (hereditary clause) A definite clause
p���� � � �.� �

��@��� � � �4yA� ��@�4y� � � �4{A� � � �3��4��y��� � � �4�� is
hereditary if for each � � !�� � $3, pattern � is a substring of
some pattern �'. An EFS is hereditary if all clauses are
hereditary.

Definition 21 [31][29] : (LB-H-EFS�[� ¡�) Denote LB-H-
EFS�C� o� as the class of languages definable by a length-
bounded, hereditary EFS with at most C definite clauses such
that the number of variable occurrences in the head of each
clause is bounded by o
���T� ��� � V o � (T� (�¢72��.

Claim 1 [29][33] : LB-HEFS�C� o� are polynomial-PAC
learnable for any �C � !� o � !�.

Claim 2 [29] : for some C � !
(a) Any context-free language is in LB-H-EFS�C� ;�.
(b) Any regular language is in LB-H-EFS�C� !�.
(c) LB-H-EFS�C� o� contains a union of C pattern languages
that are definable with at most o variable occurrences.

Pertinent results from the preceding section are

summarized in Table 3. Once again, we advise care to the
reader when interpreting these data because of overlapping or
confusing lexicon and the subtle differences between learning
methods. For example, regularity can refer to pattern
languages, a class in the Chomskly hierarchy, and a class of
EFS. Taking these three, all are very different. Gold’s famous
result [13] showed that Chomsky-regular languages cannot be
learned in the limit. However, regular pattern languages are
orthogonal to the Chomsky hierarchy and can be learned in
the limit. Meanwhile, regular EFSs correspond to context-free
languages in the Chomsky hierarchy. We have attempted to
provide a terse (and hopefully, useful) summary of research in
the area, but even apparently trivial changes in the structure of
the language and the learning model can produce significant
differences in learnability.

Language in
Chomsky
Hierarchy

EFS
Gold

Inferable

 (Hereditary)b
polynomial-PAC

Inferable
 # of clauses � £a ga £ �C� o�

recursively
enumerable

Variable
bounded NO NO NO --

context-sensitive Length
bounded NO YES NO NOc

context-free regular NO YES NO YES
regular right/left linear NO YES NO YES

a Upper limit on number of clauses in EFS.
b Only hereditary EFSs are PAC inferable. All other EFS are non-PAC inferable.
c Length-bounded EFSs are PAC learnable if we ignore computation time.

Table 3 EFS to Chomsky Mapping

93

IV. RESULTS
Our initial investigation into the use of formal language

theory has focused on the use of pattern languages. Pattern
languages are known to have good inferability results and are
easy to implement, and they are a natural first step to the
frameworks discussed in this paper.

A. Weblog data
As part of its computer network defense service provider

operation, Army Research Laboratory has access to log data
from production HTTP servers. These data are in the common
log-file format [34], as illustrated in Example 3.

Example 3 (common logfile format, URL underlined)
127.0.0.1 user-identifier frank [10/Oct/2000:13:55:36 -
0700] "GET /apache_pb.gif.0" 200 2326

 a These IP may represent NAT’ed networks. At the time of writing, we have not investigated.

Table 4 summarizes the descriptive statistics and
characteristics of the weblog data corpus.

Total log entries ~ ¤#; � ! ¥
GET requests ~¦#§ � ! ¥

POST requests ~;#¨ � ! ¥
Unique source IP addressesa 34
Logging duration / period ~ 6 days 4 hours

a These IP may represent NAT’ed networks. At the time of writing, we have not investigated.

Table 4 Weblog data corpus.

We applied PATTERN_LEARNER (PL) [5] to the weblog
data corpus. (PL and Lange and LW) [18] are largely
identical, although the write-ups are slightly different. We
selected one arbitrarily to avoid confusion.) All prototypes are
in Python, utilizing the PLY lexer [35] for string tokenization.
For this section, the symbol alphabet is derived by tokenizing
the strings into words (regex ‘\w+’) and then individual
symbols (regex ‘.’). As such, the underlined URL of
Example 3 would generate the token list:
[(/),(apache_pb),(.),(gif)]. Tokenizing on words rather than
individual characters reduces the number of symbols the
algorithm must consider. Furthermore, it allows a richer and
more reasonable comparison of strings; single-character
differences no longer throw off string comparisons.

All log entries are assumed to be normal user requests, and
therefore the data are considered to be a positive presentation.
We are not aware of any malicious “attacks” in the corpus.

PL relies on the observation that the pattern can be no
longer than the shortest string in the data-set. In this corpus,
the smallest request was the root directory (“/”). When a
pattern learner is applied to a large data-set with a min-length
string of one character, the learned pattern is a single variable.
(In our output, this would be denoted “_x0_”.)

To avoid the uninteresting single-variable output, we
batched URL data into smaller subsets. The corpus was first
broken into POST and GET requests. Within each request type
subset, we identified the set of root URLs. “Root” URLs are
nothing more than the initial directory structure of a request,
stripped of any additional parameters. Log entries were then
grep’d from the overall corpus into root-specific batches.

Table 5 demonstrates some hand-selected results for each
request type. (Full results are available upon request.) URL’s
have been rudimentarily anonymized; word-strings are
mapped to random words of equal length, and HTTP-special
characters are unchanged. This mapping preserves notional
URL structure but hides URL specifics. (Unfortunately, some
context is also lost. In many non-anonymized entries, one can
immediately identify the service accessed and data passed in
the request.)

We admit without reservation that these results are simple
and do not reflect even a partial grammar for HTTP. However,
some interesting patterns do emerge. It is important to
remember that by definition, PL cannot learn a pattern longer
than the shortest string(s) in the input set. In fact, as defined,
PL ignores all but the shortest set of input strings. Differences
among strings in this set are discovered on a character-by-
character comparison, and they are recorded as pattern
variables. As documented, neither PL nor LW performs any
variable combining as a post-processing step, and it is possible
that the output contain a series of neighboring pattern
variables.

 These facts are imperative for proper interpretation of
Table 5. For example, P.1 does not end with a pattern variable.
From the form of the pattern, it is fairly obvious that it is a
request from a standard endpoint for different files with the
same extension. For a set of data that was not a carefully
crafted batch, it is possible that this pattern reflects only the
shortest examples in the batch, and that longer examples are
far different. P.2 shows a string that is most likely an endpoint
request. As a result of our full-word lexing, the parameter of
the URL is clearly a bang-separated tuple of three values.
Finally, P.3 shows the aforementioned artifact of the learning
algorithm. PL makes no effort to optimize pattern length, nor
does it combine neighboring variables. P.3 has no repeating
variables, and one could collect the variables into a single
entry w.l.o.g. The bottom block of Table 5 shows that GET
requests are similar. G.1 illustrates a long, highly structured
request with numerous parameters. G.2, meanwhile, shows an
obvious parameter/value pairing for the root URL endpoint.
Both patterns are learned over a large number of log entries,
and we can be confident that future requests will be similar.

Regular patterns are the simplest of cases, and they do not
precisely correspond to a grammar. However, assuming the
corpus represents a positive presentation, the results do
provide insight into the language(s) accepted by specific
endpoints of HTTP server(s). If we assume that each root
URL corresponds to a code-path, learned patterns may help
identify known-good, or flag seemingly bad, requests. We
discuss this further in the following subsection and in Section
V.

B. American Fuzzy Lop Test Cases
American Fuzzy Lop (AFL) [36] is a code-fuzzing tool

developed by Michal Zalewski and implemented in C. It is
fast, powerful, and has elements of both static analysis and
standard black-box testing. When one has access to source
code, AFL is able to use a modified compiler to inject control
trampolines into a runtime. Without source code, AFL can

94

also be started in pure black-box mode, with the expected loss
of performance compared with instrumented code. AFL uses a

set of heuristics for test-case generation [37], and it uses the
instrumented binary to gauge and guide test-case coverage.
During processing, test cases are stored as input files to the
binary, in a hierarchical naming format that documents test-
case evolution. AFL generates the test cases, runs the binaries,
and records any “interesting” inputs that lead to unexpected
binary return states (hangs or crashes). As stated in AFL’s
documentation:

1) AFL and pattern languages

 Test cases are generated iteratively, because AFL permutes
previous inputs into new inputs. In general, the file-
modification operations are simple bit-level swaps, re-
orderings, or value substitutions. For pattern languages, we
would expect these operations to appear as pattern variables.
 In this subsection, we apply PL to the publicly available
corpus of test cases for libjpeg on AFL’s website. (The
corpus is publicly available, can be downloaded, and is static,
thus providing a reproducible data-set for this paper.) Files are
treated as raw binary and converted to hexadecimal characters
using the *NIX “xxd” command. At times, we omit short-
length test inputs due to the uninterestingly small pattern
languages that result.
 For these data, and this section, we slightly modified our
implementation of PL and denote the new version h�© . In
Section A, we highlighted the fact that PL is restricted by the
min-length input strings in the input set. We make the
following change: assume that the input set has + strings, and
one minimum length string of length ª. h�© selects the first ª
characters of all input strings and treats this as the set of min-
length strings. This maintains the pattern length, but avoids
single-string outputs. For clarity, h�© also collects, combines,
and renumbers consecutive pattern variables where possible.
 Table 6 shows groups of test cases derived from the same
source-case (captured in AFL in the command line “src”
field). With the inferred pattern, it is easy to immediately

identify the changes in the byte-strings over the entire
generated corpus. In cases C.2 and C.3, note the repeated
variables leading to non-regular pattern languages. Substrings
have intentionally or unintentionally been mirrored throughout
the test set.
 Numerous other researchers have focused on test-set
coverage and the use of expressive grammars for test-set
generation, and we make no claims as to the efficacy of our
work. However, this approach is a hybrid, low-effort blend of
the two techniques that we believe is worthy of future
research. We discuss it further in Section V.

2) AFL and language discovery

We observe that AFL is performing language discovery in
a randomized fashion, and Zalewski alludes to this in [38]. In
this reference, AFL is used to test the common image library
libjpeg. Rather than initializing the analysis with one or more
jpeg images, fuzzing is started on file containing the text
string “hello.” By virtue of its goal of exercising code paths
in the binary, as AFL iterates, it begins to generate test cases
that (slowly) begin to reflect the JPEG file format. Zalewski
[38] refers to this as “pulling jpegs out of thin air.” Because
AFL has no knowledge of the language “jpeg,” it is using
libjpeg as a recognizer and searching ��. Learning “jpeg” is a
byproduct of AFL’s actual goal: finding those sub-languages
that lead to unexpected program behavior. Put another way, if
libjpeg were implemented perfectly, AFL would discover no
faults. However, in its efforts to exercise all code paths, it
would develop larger and larger test-set coverage of the
language “jpeg.”

V. FUTURE WORK
Admittedly, our results represent only a cursory

investigation into the frameworks described in this paper. The
core of this work is designed to act as a literature search for
grammatical inference and as an introduction and less-
confusing reference. In the following subsections, we provide
a brief overview of areas of interest and future work.

A. Learning with Elementary Formal Systems
EFSs are covered in Section III.B of this paper. At the time

of writing, we have not implemented any EFS learning
algorithms. Research in the area has waned, and we note that

Row Pattern
Vars POST Requests (Anonymized URLs) # of Samples

P.1 1 /7NWS/XBPD07F/HXZRT/6BR/PR9M/_x0_.Q7OJ 83199
P.2 3 /0YDO8J33LKSC/DKWPZJ/QCSY1BWNRIG65;R9LZ64B6GI=_x0_!_x1_!_x2_ 2366
P.3 4 /5HEZP8EKVK3R9RGF9D_x0__x1__x2__x3_ 204950

Row Pattern
Vars POST Requests (Anonymized URLs) # of Samples

G.1 17 /KPGF/7OH0EHB1.HE9?id=_x0_%F95X4L2%_x1__x2__x3__x4_'_x5__x6_%_x7_%_x8__x2__x3__x11_'_x12__
x6_%_x14_%_x15_='_x16_' 6464

G.2 4 /89TM/8J7MNN1/3H6WH/H751AQ57?_t=cd&33XKQ5I6=_x0_&IMK6XIR3=_x1_&AELAN=_x2_&COV=en&8
9S8A2JUFSVXE=_x3_ 3096

 Table 5 Pattern Learning Weblog Data (pattern variables = “_x<integer>_”)

As a side result of the fuzzing process, the tool creates a small,
self-contained corpus of interesting test cases. These are extremely

useful for seeding other, labor- or resource-intensive testing regimes…

95

the applied EFS inference studies of Arikawa [29] and Miyano
[24] were performed in the early 1990s and 2000s,
respectively. Neither had access to the ubiquitous and high-
performance computation available today, and we intend to
leverage computational resources to apply their experimental
techniques to our own data.

B. Hybrid Fuzzing/Analysis/Grammar Inference

In Section IV.B, we discussed the use of pattern languages
with AFL. Previously, we have mentioned our hypothesis that
although many contemporary programs are thought to accept a
single language ���, in actuality, they accept a union of
finitely many sub-languages � � ���� ��� � � ���. Moreover,
we believe that those sub-languages often correspond to
specific code paths in the target binary.

Our plan is to leverage publicly available tools including
clang [39] for LLVM [40] and the aforementioned AFL [36]
to tie language learning to code paths. Although it is likely
impossible to exhaustively enumerate learnable examples, it
may be possible to learn enough about sub-language grammar
to restrict inputs. By tying grammars to code paths, we hope to
be able to restrict inputs to those paths that are assumed (or
known) safe. Fracturing of a grammar into sub-grammars that
have identifiable execution chains will allow monolithic
binaries to be leveraged and still avoid components that are
apocryphal, old, esoteric, and likely unsafe [41].

C. Other Frameworks
Pattern languages and EFSs are certainly not the only two

grammatical inference frameworks available. Notably, some
recent works that focused on natural language processing
(Clark [42][43][44]) show promise for grammatical inference.
We plan to evaluate and compare these methods with those
mentioned in this paper.

VI. CONCLUSION/DISCUSSION

 In this paper, we have provided an overview of pattern
languages and EFSs and their inferability. We have attempted
to collect and organize results, de-conflict notation, and
highlight the points most germane to LANGSEC. EFSs map
directly to the Chomsky hierarchy and can be thought of as a
Prolog-like programming language. Pattern languages, on the
other hand, resemble regular expressions, are orthogonal to the
Chomsky hierarchy, and are much easier to implement. Both

frameworks have subclasses that are learnable in the limit or
under PAC constraints. Our literature search and initial results
end with the unavoidable conclusion that grammatical
inference is hard and that learning grammar for even the
simplest classes is theoretically and computationally difficult.
However, LANGSEC suffers from similar difficulties, only
the price is paid at design time. To reap the benefits of
LANGSEC’s approach, programs require Chomsky-limited
protocols and parsers. Grammatical inference and the
techniques presented here offer the promise of using
LANGSEC after the fact. Pattern languages and EFSs have
potential for learning, segmenting, and better understanding
grammars.
 Our initial results with weblog data and fuzzer input are
encouraging enough to motivate continued research in this
area. We believe that additional work with these frameworks
will lead to tools to help secure existing systems and to assist
during the design of new ones.

REFERENCES
[1] L. Sassaman, M. L. Patterson, S. Bratus, and M. E.

Locasto, “Security applications of formal language
theory,” Syst. J. IEEE, vol. 7, no. 3, pp. 489–500, 2013.

[2] “Schneier on Security: Heartbleed.” [Online]. Available:
https://www.schneier.com/blog/archives/2014/04/heartble
ed.html. [Accessed: 12-Jan-2015].

[3] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M.
Bailey, F. Li, N. Weaver, J. Amann, J. Beekman, M.
Payer, and others, “The matter of Heartbleed,” in
Proceedings of the 2014 Conference on Internet
Measurement Conference, 2014, pp. 475–488.

[4] “Bash specially-crafted environment variables code
injection attack | Red Hat Security.” [Online]. Available:
https://securityblog.redhat.com/2014/09/24/bash-
specially-crafted-environment-variables-code-injection-
attack/. [Accessed: 12-Jan-2015].

[5] C. De la Higuera, Grammatical Inference, vol. 96.
Cambridge University Press Cambridge, 2010.

[6] D. Angluin, “Computational learning theory: survey and
selected bibliography,” in Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of
Computing, 1992, pp. 351–369.

I.D. Vars.
Test set (files)

 # Case Length (b) �«¬­� «®­� PL-inferred Pattern Language

C.1 15

<corpus>/jpeg/full/images/*src:000619*
ffd8ffe000104a46494600010102001c001c0000ffdb004300281c1e231e19282321232d2b28303c64413c37373c7b585d496491809996
8f808c8aa0b4e6c3a0aadaa_x0_8a8cc8ffcbdaeef5ffffff9bc1fffffffaffe6fdfff8ffdb0043012b2d2d3c353c76_x1_4176f8a58ca
5f8f_x2_f8f8f8f8f8f8f8f8f8f8ffc100
11080020002003012200021101031101ffc4001800010100030000000000000000000000000_x3_03000104ffc4002510000_x4_0_x5_0
1040103050000000000000000_x6_0_x7_3_x8_0_x9_41221312241_x10_71_x11_143361a1ffc40016010101010000000000000000000
0000000000102ffc4001a1101000203010000000000000000000000_x12_122241ffda000c03010002110311000f00567_x13_c_x14_

25 (504,117)

C.2 6

/jpeg/edges-only/images/*src:003554*

12

ffd8ffdd0004_x0_00b400e8ffdb00438028101efffaffe6fdfff8ffdb0043012b2d2d3c353c64414176f8a58ca5f8f8d500010000f8f8
f8f0f8f8f84a64653d79906fc317d3caf8f8f8f8f8f8f8f8f801001c0000ffdb004300281c1e231e19282336232d2bef303c64413c3737
3c7b585d49649180999600018c8aa0b4ad8a8cc8ffe4daee097affff9bc1fffffffaffd1fdfff8ffdb0043012b2d2d3cf8f8f8f8e3f8f0
e9f900f8f84a6a653d79906fdf17d3b7f8f8f8f8f8f8f8f8f8ffca001108_x2_0_x3__x4__x4_2003012200021101031101ffda0006000
118012200021101031101ffda0006000103000300010000000000040000000001ffda000801010101010101010_x1_

(260,0)

C.3 6
/jpeg/edges-only/images/*src:000512*

(170,80)
ffd8ffe000104a_x0__x3__x4__x3__x1_0_x2_ 12

 Table 6 Pattern Language for American Fuzzy Lop JPEG Corpus

96

[7] D. Angluin and C. H. Smith, “Inductive inference: theory
and methods,” ACM Comput. Surv. CSUR, vol. 15, no. 3,
pp. 237–269, 1983.

[8] T. Shinohara and H. Arimura, “Inductive inference of
unbounded unions of pattern languages from positive
data,” Theor. Comput. Sci., vol. 241, no. 1–2, pp. 191–
209, Jun. 2000.

[9] D. Angluin, “Inductive inference of formal languages
from positive data,” Inf. Control, vol. 45, no. 2, pp. 117–
135, 1980.

[10] S. Lange, G. Grieser, and K. P. Jantke, “Extending
elementary formal systems,” in Algorithmic Learning
Theory, 2001, pp. 332–347.

[11] E. Y. Shapiro, Inductive inference of theories from facts.
Yale University, Department of Computer Science, 1981.

[12] T. Shinohara, “Inferring unions of two pattern
languages,” Bull Inf, 1983.

[13] E. M. Gold, “Language identification in the limit,” Inf.
Control, vol. 10, no. 5, pp. 447–474, 1967.

[14] L. G. Valiant, “A theory of the learnable,” Commun.
ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth, “Learnability and the Vapnik-Chervonenkis
dimension,” J. ACM JACM, vol. 36, no. 4, pp. 929–965,
1989.

[16] B. K. Natarajan, “On learning sets and functions,” Mach.
Learn., vol. 4, no. 1, pp. 67–97, 1989.

[17] M. Anthony, Computational learning theory. Cambridge
University Press, 1997.

[18] S. Lange and R. Wiehagen, “Polynomial-time inference
of arbitrary pattern languages,” New Gener. Comput., vol.
8, no. 4, pp. 361–370, Feb. 1991.

[19] D. Angluin, “Finding Patterns Common to a Set of
Strings (Extended Abstract),” in Proceedings of the
Eleventh Annual ACM Symposium on Theory of
Computing, New York, NY, USA, 1979, pp. 130–141.

[20] T. Shinohara, “Polynomial time inference of extended
regular pattern languages,” in RIMS Symposia on
Software Science and Engineering, E. Goto, K.
Furukawa, R. Nakajima, I. Nakata, and A. Yonezawa,
Eds. Springer Berlin Heidelberg, 1983, pp. 115–127.

[21] Y. K. Ng and T. Shinohara, “Developments from
enquiries into the learnability of the pattern languages
from positive data,” Theor. Comput. Sci., vol. 397, no. 1,
pp. 150–165, 2008.

[22] S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y.
Mukouchi, and T. Shinohara, “A machine discovery from
amino acid sequences by decision trees over regular
patterns,” New Gener. Comput., vol. 11, no. 3–4, pp.
361–375, 1993.

[23] S. Jain, Y. S. Ong, and F. Stephan, “Regular patterns,
regular languages and context-free languages,” Inf.
Process. Lett., vol. 110, no. 24, pp. 1114–1119, Nov.
2010.

[24] S. Miyano, A. Shinohara, and T. Shinohara, “Polynomial-
time learning of elementary formal systems,” New Gener.
Comput., vol. 18, no. 3, pp. 217–242, Sep. 2000.

[25] D. Reidenbach, “A non-learnable class of E-pattern
languages,” Theor. Comput. Sci., vol. 350, no. 1, pp. 91–
102, 2006.

[26] K. Wright, “Identification of unions of languages drawn
from an identifiable class,” in Proceedings of the Second
Annual Workshop on Computational Learning Theory,
1989, pp. 328–333.

[27] A. Colmerauer and P. Roussel, “The birth of Prolog,” in
History of programming languages---II, 1996, pp. 331–
367.

[28] R. M. Smullyan, Theory of Formal Systems. Princeton
University Press, 1961.

[29] S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara, and T.
Shinohara, “A learning algorithm for elementary formal
systems and its experiments on identification of
transmembrane domains,” in Proceedings of the Twenty-
Fifth Hawaii International Conference on System
Sciences, 1992, 1992, vol. i, pp. 675–684 vol.1.

[30] T. Shinohara, “Rich Classes Inferrable from Positive
Data: Length-Bounded Elementary Formal Systems,” Inf.
Comput., vol. 108, no. 2, pp. 175–186, Feb. 1994.

[31] S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, and
A. Yamamoto, “Algorithmic Learning Theory with
Elementary Formal Systems,” IEICE Trans. Inf. Syst.,
vol. E75-D, no. 4, pp. 405–414, Jul. 1992.

[32] S. Arikawa, T. Shinohara, and A. Yamamoto, “Learning
elementary formal system,” Theor. Comput. Sci., vol. 95,
no. 1, pp. 97–113, Mar. 1992.

[33] S. Miyano, A. Shinohara, and T. Shinohara, “Which
classes of elementary formal systems are polynomial-
time learnable,” in Proc. 2nd Workshop on Algorithmic
Learning Theory, 1991, pp. 139–150.

[34] A. Luotonen, “The common logfile format (1995),” URL
Httpwww W3 OrgDaemonUserConfigLogging Html
Commonlogfile-Format.

[35] “PLY (Python Lex-Yacc).” [Online]. Available:
http://www.dabeaz.com/ply/ply.html. [Accessed: 11-Jan-
2015].

[36] “american fuzzy lop.” [Online]. Available:
http://lcamtuf.coredump.cx/afl/. [Accessed: 28-Nov-
2014].

[37] “Binary fuzzing strategies: what works, what doesn’t,”
lcamtuf’s blog, 08-Aug-2014. .

[38] “Pulling JPEGs out of thin air,” lcamtuf’s blog, 07-Nov-
2014. .

[39] “‘clang’ C Language Family Frontend for LLVM.”
[Online]. Available: http://clang.llvm.org/. [Accessed:
12-Jan-2015].

[40] C. Lattner and V. Adve, “LLVM: a compilation
framework for lifelong program analysis &
transformation,” in Code Generation and Optimization,
2004. CGO 2004. International Symposium on, 2004, pp.
75–86.

[41] “Heartbleed,” Wikipedia, the free encyclopedia. 30-Dec-
2014.

[42] A. Clark, R. Eyraud, and A. Habrard, “A Polynomial
Algorithm for the Inference of Context Free Languages,”

97

in Grammatical Inference: Algorithms and Applications,
A. Clark, F. Coste, and L. Miclet, Eds. Springer Berlin
Heidelberg, 2008, pp. 29–42.

[43] A. Clark, “Learning Trees from Strings: A Strong
Learning Algorithm for some Context-Free Grammars,”
J. Mach. Learn. Res., vol. 14, pp. 3537–3559, 2013.

[44] A. Clark, “Efficient, correct, unsupervised learning of
context-sensitive languages,” in Proceedings of the
Fourteenth Conference on Computational Natural
Language Learning, 2010, pp. 28–37.

98

