
Verification State-Space Reduction Through Restricted Parsing Environments

Jacob I. Torrey and Mark P. Bridgman

Assured Information Security
Greenwood Village, CO, USA

{torreyj, bridgmanm}@ainfosec.com

Abstract—We discuss the potential for significant reduction
in size and complexity of verification tasks for input-handling
software when such software is constructed according to
LangSec principles, i.e., is designed as a recognizer for a
particular language of valid inputs and is compiled for a
suitably limited computational model no stronger than needed
for the recognition task. We introduce Crema, a programming
language and restricted execution environment of sub-Turing
power, and conduct a case study to estimate and compare the
respective sizes of verification tasks for the qmail SMTP parsing
code fragments when executed natively vs in Crema—using
LLVM and KLEE. We also study the application of the same
principles to the verification of reference monitors.

Keywords-Walther recursion, verification, qmail, program-
ming languages, parsing, LLVM, language-theoretic security,
LangSec.

I. INTRODUCTION

Language-theoretic security (LangSec) posits that input-

handling code modules must be constructed as verifiable

recognizers for well-specified languages of valid or expected

inputs, described by means of the formal language the-

ory [1]. In particular, design of such software must start

with writing down the exact grammar for the desired input

language, determination of its complexity class and the

appropriate class of the recognizer automaton for this lan-

guage; the developers should then implement this automaton.

Designers should take every effort to reduce the complexity

class of the input language, preferring regular languages

to context-free, context-free to context-sensitive, and so

on; computational complexity exposed to inputs should be

considered as another kind of “privilege” to be minimized

away from attackers’ reach.

LangSec argues that failure to construct input-handling

software in this fashion is the root cause for the majority

of security vulnerabilities exploited via crafted inputs. The

essence of all such exploitation scenarios is that crafted

inputs drive vulnerable code into unexpected state and

through unexpected computation—in a process not unlike

bytecode driving a virtual machine (see [2] for an informal

overview, [3] for a formalism sketch). In a nutshell, crafted

input acts as a program executed by the vulnerable software

module.

Thus, in the LangSec view, input validation bears a

striking similarity to program verification tasks, aimed at

precluding inputs from driving their handling code into

unexpected state and through unexpected computation. Such

verification can only be achieved if the input-parsing code

is constructed to verifiably reject any inputs outside of a

formal-language definition (grammar) of valid or expected

inputs.1

Program verification is notoriously hard. However,

LangSec points out that in the special case of input language

recognizer programs, the simpler the input language, the

more constrained computation model its recognizer needs—

and the more approachable the verification of such a rec-

ognizer becomes. Thus LangSec offers a way to apply

verification where it has the biggest security impact—

at communication boundaries, to rigorously defined input

validation—while at the same time minimizing verification’s

costs by severely reducing the computational power of

the execution environment of the program to be verified.

Whereas traditional verification problems implicitly assume
that the underlying computational model of the code they
target cannot be substantially simplified, LangSec posits
that such simplification can and should be considered for
input-parsing routines—as an important step toward security
assurance.

This paper seeks to demonstrate the scalability gain in

the size of verification tasks from a restricted computational

model. It introduces a sub-Turing programming language,

Crema, and shows that it allows for easier verification

and run-time monitoring through reduction of the verifica-

tion problems’ state-space growth. Since valid or expected

input languages should not require full Turing-complete

power of their recognizers, Crema could become a use-

ful research benchmark for implementing verifiable input-

validation modules in the LangSec paradigm.

A. Contributions

We describe a computational model that is less expensive

to verify than the standard Turing-complete abstraction that

underlies the development of general-purpose software. We

1Sometimes software may opt to process inputs that are not valid
according to a protocol standard but are nevertheless expected, due to a
long-time consensus. However, all such idiomatic inputs should be precisely
specified as a part of the input language. Informal approaches such as
attempts to “patch” invalid inputs by rewriting them have invariably led to
security disasters, in which attackers co-opted the rewriting functionality
(e.g., [4]).

2015 IEEE CS Security and Privacy Workshops

© 2015, Jacob I. Torrey. Under license to IEEE.

DOI 10.1109/SPW.2015.30

106

analyze the benefits of a corresponding reduction in state-

space search time of verification tasks for input valida-

tion of SMTP, a key Internet protocol. We also point out

how our model helps to avoid the undecidability traps of

which LangSec warns. An open-source, general-purpose

programming language, Crema, is introduced that targets

LLVM and can be used to develop embedded parsers that

can be monitored with high efficiency and verified with

higher assurance. Finally, we study this model empirically

by applying it to verification of the qmail [5] parsing code

compared to a Crema parser and determining the reductions

in the state-space of the respective verification tasks.

II. PROBLEM SPECIFICATION

A. Background

The following sub-sections provide a brief background to

the concepts built-upon in this work.

1) Language-theoretic Security: Language-theoretic Se-

curity (LangSec) sketches a unified view of software ex-

ploitation, with the concept of a “weird machine”: an ad hoc,

emergent virtual machine that converts input data into exe-

cution flow with unexpected states and state transitions [3].

From the LangSec perspective, return-oriented program-

ming (ROP) is an example in which a “weird machine”
is constructed by mining an existing code base such as

glibc for executable “gadgets” (ending in RET instructions);

the chain of faked stack frames of the exploit payload

acts as its program, executing on the emergent machine

composed of these gadgets (in addition to the memory-

corrupting bug that overwrites the stack with this program).

On a closer look, the addresses of these gadgets in memory

form assembly-level byte-codes (op-codes) that drive the

execution of the weird machine to unintended states in the

control-flow graph (CFG). This construct has been described

as early as 2001 by [6], [7]; its expressive power has been

definitively described in terms of Turing-completeness in [8],

finally shifting the academic security’s threat model from the

behind-the-times and narrow “malicious code” to “malicious

computation” (see also [9]).

2) Software Tools for Our Case Study:
LLVM and KLEE: The LLVM compiler frame-

work [10] is a tool-chain of modular components to analyze,

optimize, compile, and execute programs via a standardized

byte-code intermediate-representation (IR). Front-ends parse

an input language, construct an abstract syntax tree (AST),

and emit LLVM IR, which then can leverage the existing

optimization passes, a cross-platform just-in-time compiler,

and static analysis tools to allow for rapid compiler devel-

opment.

Once an input program has been converted to the IR, there

are a number of tools and libraries that can then be used

to optimize the IR for faster execution or smaller memory

footprint. There also exist a number of tools designed to aid

in the analysis and verification of input programs, one of

which is KLEE [11], a tool to symbolically execute input

programs to search for test-cases that will lead to an error or

crash. KLEE attempts to exercise all possible branches of the

input program’s CFG by substituting a symbolic value for

each branch condition and continuing down both branches.

If a certain path causes an error or program crash, it will

use a constraint-solver on the symbolic branch conditions

leading to the error in order to generate a concrete input

test-case. The scope of these conditions must be carefully

limited by human-provided hints to prevent the solver from

crashing or running for an unreasonable/unbounded amount

of time. This is of greater importance in programs that

contain unbounded loops as the KLEE engine at times thinks

each iteration of the unbounded loop is a new state, thus

running the verification endlessly.

Due to the Halting Problem’s undecidability for Turing-

complete languages, KLEE cannot determine whether or

not a certain program will terminate on a given input. In

order to work around this, KLEE will execute the program

symbolically for a preset amount of time (by default three

minutes) and then terminate, thus there are some input

programs that KLEE cannot exercise in entirety.

Qmail: a resilient secure Mail Transfer Agent: D.J.

Bernstein’s qmail [12] is a mail-transport agent (MTA)

designed with security as a core requirement. The author

had offered a reward for anyone who can report a security

vulnerability in qmail in 1997; the only time the bounty

was claimed was in 2009. In describing the lessons learned

during the ten years of the MTA’s development, Bernstein

highlights the dangers of parsing input; accordingly, he

worked to keep qmail’s internal file formats as simple

as possible. Moreover, he recognized the SMTP parser as

being the highest risk of compromise, and isolated it in a

separate, untrusted process. Qmail’s lessons remain highly

relevant for today’s high-profile input-related vulnerabilities

such as Heartbleed, GnuTLS Hello overflow, MS SChannel,

BERserk, and others.

B. LangSec-inspired Challenges

LangSec highlights the risks involved with parsing input

into a program’s internal type-system and demonstrates how

a poorly designed or implemented parser creates a risk

of unintended computations. The theory goes further and

calls for input languages to be as restricted as possible,

urging programmers to utilize the minimum amount of

computational expressiveness necessary to validate inputs.

This paper specifically looks at the challenges faced by tools

designed to verify or automatically test program implemen-

tations in order to detect security risks before the software

is put into production. Even with a strict input grammar

and a well-designed parser, implementation flaws can still

undermine the security of the overall program. Without fast

and effective program analysis tools, those implementation

flaws can persist into the production application.

107

It is in this light that Crema was devised, and this paper

will compare verifiability of a restricted parser with that of

a well-designed parser that has withstood many years of

security scrutiny. By increasing the ability for automated

testing and verification tools to detect implementation flaws,

especially those in input parser, Crema aims to improve

software security by putting a tool into the hands of software

developers to employ LangSec theories transparently.

III. SOLUTION

A. Crema Programming Language

As part of this research effort, we developed Crema, an

open-source programming language environment targeting

the LLVM tool-chain, with the hopes of demonstrating the

benefits of a computationally restricted environment.
1) Motivation: The point of Crema is to implement

certain development tasks with language-guaranteed termi-

nation and thus greatly ease verification of security-critical

program elements (such as input recognizers/parsers). In

particular, these tasks include input validation at commu-

nication boundaries, where verifying the correctness of the

input recognizer’s implementation is paramount to security.

As most input-handling programs are intended by their

developers to be transducers, performing computations on

input and generating a resultant output, termination is not

a roadblock to a majority of development projects. Clearly,

there are a number of special exceptions to this pattern such

as: operating system scheduling loops, event-handling loops,

server listen loops, and read-evaluate-print loops (REPL)

that interact with a user for an undetermined period of time

(user-driven I/O).

It is, however the opinion of the authors that such an

environment benefits a number of common programming

tasks that notoriously produce vulnerabilities. As the LLVM

IR resulting from a Crema program can be easily linked

with any programs that can be compiled with LLVM, it

is possible to develop the security-critical elements of a

program, such as those routines that parse input in Crema,

and verify them with higher assurance. Many development

tasks for new efforts could be wholly written in Crema or

a Crema-like restricted language to take advantage of the

security benefits automatically provided.
2) Theoretical Underpinnings: The programming envi-

ronment presented in this paper is based on the classic

Turing machine described in [13], however the transition

function (δ), is limited in such a way that it cannot return

to an already-visited state:

δ : (Q \ F)× Γ→ Q′ × Γ× {L,R}
where: Q is the finite set of states, F is the set of terminating

states, Γ is the symbol alphabet, {L,R} denote moving

the tape reader head left or right, and Q′ is the new set

of states Q′ : Q \ qc where qc is the current state. Due

to this limitation, the modified Turing machine will always

terminate once all states in Q have been exhausted if not

earlier. The state-space to search in order to verify δ has an

upper bound of the number of states, thus a time-limit is

not needed to determine if the verification is complete and

exhaustive.

Just-in-time Function Inliner & Loop Unroller: The

above model is highly restrictive and translates into a

programming language with limited practical use. With the

aforementioned limitations, looping and function calls are

impossible to represent, as a RET in the function or a branch

in the loop condition must return to a previously-visited

state. In order to retain the benefits of the model, while

still allowing function and (bounded) loop semantics, a JIT

preprocessor is presented. This preprocessor is similar to the

unrolling presented in [14].

In the aforementioned transition function, a set of states

S is grouped into a named “model function”, named with a

unique symbol: mn ∈ Γ. When the execution reaches said

symbol, the model function is duplicated and inserted into

Q, yielding Q′ : Q ∪ S. This process can be imagined as a

mapping application of a replacement of a duplicate of the

model function across all the unique function symbols in

the program. When the transition function is loaded into the

modified Turing machine, each function call will be inlined

with a duplicate set of states and transitions representing the

semantics of the function body.

A set of states can also be designated as a loop body

and defined with a parameterized variable for the number of

iterations to unroll. The start of each loop is denoted with a

unique symbol. As the modified machine is executing, when

the start of a loop symbol is reached, the JIT loop unroller

will interrupt the machine and create n duplicate groups of

the loop body (and optionally in-lining any functions within

the loop), one for each loop iteration. The upper bound on

the number of iterations (n) must be known at the time

the loop begins (Walther recursion [15]), and thus must be a

function of the inputs read from the tape and constant values.

These new duplicate states are now able to be reached at

most one time as per the above machine specification.

With this JIT inliner and the loop unroller, our modified

Turing machine can emulate many of the semantics found

in popular general-purpose programming languages and their

associated run-time environments, excepting the unbounded

loops or loops cannot have the number of iterations calcu-

lated a priori. In the following subsection, an equivalent pro-

gramming language is described in detail and in Section IV

is used to empirically contrast the state-space growths of a

Turing-complete programming environment versus a more

restricted model.

3) Language: Crema was designed to be a limited pro-

gramming language that provides a restricted (but still practi-

cally useful) computational environment, while still having

108

〈integer〉 ::= ‘char’

| ‘int’

| ‘uint’

〈boolean〉 ::= ‘true’

| ‘false’

〈type〉 ::= void

| integer

| ‘double’

| boolean

〈string〉 ::= ‘char’[n]

Figure 1. Crema Types

a minimal learning-curve for software developers2. It is a

weakly-typed (see Figure 1) procedural language supporting

implicit up-casting of the below-defined “larger” types3:

⎧⎪⎨
⎪⎩

int < bool

double < bool

char < int < double

Crema has a similar syntax to Ruby or C, with the excep-

tion of not allowing unbounded loops or non-terminating

recursion (or co-recursion). A BNF representation of the

grammar can be found in Section III-A4. The core looping

construct in Crema is the foreach instruction, which

iterates through a list and performs the desired computa-

tions on each element of the list. As part of the Crema

standard library, a crema seq(start, end) function

is provided to generate a sequence of consecutive numbers

in a list for looping a certain number of times. While these

constructs can be found in other programming languages

(seq() in R, and foreach in PHP or LISP), what is

unique about Crema is that it does not support unbounded

looping constructs such as while in C-like languages of

loop in LISP-like languages. An example Crema program,

a slight modification to the widely-used interview question

“FizzBuzz” [16], is presented in Figure 2 to provide the

reader with an example of a program written for a restricted

environment; the abbreviated LLVM assembly is shown in

Appendix D.

The Crema compiler (cremacc) processes these input

programs and converts them to LLVM IR byte-code, which

then is optionally compiled to native machine code for the

current platform. If the program is kept in the IR format, it

is easily portable to other LLVM-support platforms and can

2Crema is under heavy development and, as such, syntax and program-
ming APIs may change over time.

3E.g., double d = 1 is a valid Crema statement, but int i = 1.0
is not and must use an explicit conversion

int hundred[] = crema_seq(1, 100)

foreach(hundred as i) {
int_print(i)
str_print(" ")
if (i % 3 == 0) {

str_print("Fizz")
}
if (i % 5 == 0) {

str_print("Buzz")
}

str_println(" ")
}

Figure 2. Sample Crema Program: “FizzBuzz”

be used as input for the existing tools that target the LLVM

tool-chain.
4) Crema Grammar:

〈program〉 ::= 〈statements〉
| 〈empty〉

〈block〉 ::= ‘{’ 〈statements〉 ‘}’

| ‘{’ ‘}’

〈statements〉 ::= 〈statement〉
| 〈statements〉 〈statement〉

〈statement〉 ::= 〈var decl〉
| 〈struct decl〉
| 〈func decl〉
| 〈assignment〉
| 〈conditional〉
| 〈loop〉
| 〈return〉

〈var decl〉 ::= 〈type〉 〈identifier〉
| 〈type〉 〈identifier〉 ‘=’ 〈expression〉
| ‘struct’ 〈identifier〉 〈identifier〉
| ‘struct’ 〈identifier〉 〈identifier〉 ‘=’

〈identifier〉
| 〈list decl〉

〈struct decl〉 ::= ‘struct’ 〈identifier〉 ‘{’ 〈var decls〉
‘}’

〈func decl〉 ::= 〈def 〉 〈type〉 〈identifier〉 ‘(’

〈func decl arg list〉 ‘)’ 〈block〉
| 〈def 〉 〈type〉 ‘[’ ‘]’ 〈identifier〉 ‘(’

〈func decl arg list〉 ‘)’ 〈block〉
| ‘extern’ 〈def 〉 〈type〉 〈identifier〉

‘(’ 〈func decl arg list〉 ‘)’

109

| ‘extern’ 〈def 〉 〈type〉 ‘[’ ‘]’

〈identifier〉 ‘(’ 〈func decl arg list〉
‘)’

〈assignment〉 ::= 〈identifier〉 ‘=’ 〈expression〉
| 〈list access〉 ‘=’ 〈expression〉
| 〈struct〉 ‘=’ 〈expression〉

〈conditional〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈block〉
| ‘if’ ‘(’ 〈expression〉 ‘)’ 〈block〉

‘else’ 〈block〉
| ‘if’ ‘(’ 〈expression〉 ‘)’ 〈block〉

‘else’ 〈conditional〉

〈loop〉 ::= ‘foreach’ ‘(’ 〈identifier〉 ‘as’

〈identifier〉 ‘)’ 〈block〉

〈return〉 ::= ‘return’ 〈expression〉

〈type〉 ::= ‘double’

| ‘int’

| ‘str’

| ‘void’

| ‘bool’

〈var decls〉 ::= 〈var decl〉
| 〈var decls〉 ‘,’ 〈var decl〉
| 〈empty〉

〈def 〉 ::= ‘def’

〈func decl arg list〉 ::= 〈var decl〉
| 〈func decl arg list〉 ‘,’ 〈var decl〉
| 〈empty〉

〈list decl〉 ::= 〈type〉 〈identifier〉 ‘{’ ‘}’

| 〈type〉 〈identifier〉 ‘{’ ‘}’ ‘=’

〈expression〉

〈expression〉 ::= 〈term〉
| 〈expression〉 〈bitwise〉 〈term〉
| 〈expression〉 ‘+’ 〈term〉
| 〈expression〉 ‘-’ 〈term〉

〈term〉 ::= 〈factor〉
| 〈term〉 ‘*’ 〈factor〉
| 〈term〉 ‘/’ 〈factor〉
| 〈term〉 ‘%’ 〈factor〉
| 〈term〉 〈comparison〉 〈factor〉

〈comparison〉 ::= ‘==’

| ‘!=’

| ‘>’

| ‘<’

| ‘>=’

| ‘<=’

| ‘&&’

| ‘||’

〈bitwise〉 ::= ‘&’

| ‘ˆ’

| ‘|’

〈factor〉 ::= 〈var access〉
| 〈list〉
| 〈value〉
| 〈identifier〉 ‘(’ 〈func call arg list〉

‘)’

| ‘(’ 〈expression〉 ‘)’

| ‘-’ ‘(’ 〈expression〉 ‘)’

〈var access〉 ::= 〈identifier〉
| 〈list access〉
| 〈struct〉
| ‘-’ 〈var access〉

〈list access〉 ::= 〈identifier〉 ‘[’ 〈expression〉 ‘]’

| 〈identifier〉 ‘[’ ‘]’

〈struct〉 ::= 〈identifier〉 ‘.’ 〈identifier〉

〈list〉 ::= ‘{’ 〈func call arg list〉 ‘}’

〈func call arg list〉 ::= 〈expression〉
| 〈func call arg list〉 ‘,’ 〈expression〉
| 〈empty〉

〈value〉 ::= 〈numeric〉
| 〈string〉
| ‘true’

| ‘false’

〈numeric〉 ::= 〈double〉
| ‘-’ 〈double〉
| 〈int〉
| ‘-’ 〈int〉

IV. EXPERIMENTAL EVALUATION

To empirically measure the benefits of this restricted

programming environment with respect to verification, the

qmail-smtpd parser code was executed symbolically with

KLEE while recording metrics of the state-space growth

in two different testing scenarios. The qmail parser is an

example of very well-designed and securely developed code

110

written in a fully Turing-complete environment. A simple,

yet similar parser was developed in the restricted Crema pro-

gramming language in order to compare the code-coverage

and state-space explosion when tested by KLEE. KLEE was

used to explore the state-space growth and detect crash cases,

not to verify certain properties about the program, thus no

source code annotations are used.

Why qmail: Our selection of qmail to test a measure to

ease verification of programs designed with LangSec in mind

is not incidental. Firstly, qmail design stresses the perils of

parsing and the necessity to isolate parsers of data coming

from the network with all possible OS means. This is entirely

consistent with the LangSec view and provides us with the

parser cleanly separated from the rest of the MTA logic.

Thus, using qmail removes the challenge of having to draw

arbitrary boundaries between the code that validates inputs

(and thus must be verified to recognize and accept exactly

the inputs specified as valid) and the code that is written

based the assumption that such validation has occurred—

with qmail, this separation that LangSec demands explicitly

is approached very closely if not perfectly.

Secondly, qmail’s input parsing tasks are clearly represen-

tative of the real challenges faced by programs that must take

untrusted input from the Internet. Despite being “simple”,

SMTP has seen a number of notoriously unsafe implemen-

tations before qmail, with input-handling bugs that became

iconic in their class. At the same time, as an MTA agent for

an already widely deployed protocol, qmail is under pressure

to accommodate existing input variations and dialects rather

than being at liberty to merely subset them and discard all

inputs non-compliant with the chosen subset. Thus, qmail’s
parsing is representative of the complexity associated with

handling a broadly deployed “legacy” protocol.

Test I: In the first test, the qmail-smtpd parser is re-

moved from the unbounded input loop, and the parser func-

tion is passed a symbolic input of increasing length. It is then

exercised normally by KLEE, as in the verification of a typ-

ical program or in an AEG tool’s search. KLEE is instructed

(with the --only-output-states-covering-new
argument) to keep separate statistics for the total number

of paths explored and the number of unique paths without

revisiting previously exercised states. This scenario is not

guaranteed to exercise the entire CFG and may miss certain

states due to the state-space explosion. The latter statistic is

used to model the restricted transition function described in

Section III-A2. The difference in growth rates of total and

“trimmed” paths was measured and is detailed in Section

IV-A.

Test II: The qmail-smtpd program has two signifi-

cant functions that handle input parsing (commands and

addrparse)4. The initial parsing routine is the simpler of

4int commands(ss, c) (line 9 in ‘commands.c’) and int
addrparse(arg) (line 140 in ‘qmail-smtpd.c’) in qmail-1.03

the two. It reads a string from an input buffer and attempts

to split the string into a command and an optional argument.

The command portion is used to index a table of function

handlers. Specific commands will trigger the second parsing

routine to parse the argument. For the sake of simplicity,

the entire input was defined to be symbolic, but in order to

target the second parsing routine the command portion was

fixed (via klee assume()). The argument portion was

defined to be at most eight bytes long in order to maximize

code coverage while restricting state space growth.

In the second test, the qmail-smtpd parser code is modified

to simulate execution in a restricted computation environ-

ment equivalent to the Crema execution mode. Unbounded

loops are removed, and tests are performed with fixed length

symbolic inputs to limit the number of iterations performed

by input parsing loops (approximating the transducer-like

environment explained in Section III-A1). In this environ-

ment, the state-space is drastically reduced by the lack of

unbounded loops, and verification is faster, thus able to

practically handle larger code-bases for checking.

In this latter test, both the modified and unmodified qmail-
smtpd parser was symbolically executed multiple times with

increasing limits on execution time. The number of paths

explored, instruction coverage, and average program states,

among other metrics, were all recorded for each test5.

This test aims to show the benefits of programming in a

language with restricted computational expressiveness, such

as described in Section III-A.

Test III: This final test used KLEE to exercise a

prototype parser written in Crema designed to operate in

a similar fashion to the qmail parser. The goal of this

test case was to explore state-space growth in a restricted

and sub-Turing programming environment versus a well-

designed, but Turing-complete parser. The source code for

the parser (edited slightly for brevity and clarity) can be

found in Appendix B along with the corresponding qmail

commands parser functionality in Appendix C (with the

infinite loop commented out). Both of these parsers were

executed symbolically with KLEE in order to compare how

a very well-written and security-conscious parser written in

C would compare with a prototype Crema parser vis-à-vis

state-space growth. The results for this test are discussed in

Section IV-A.

A. Results and Discussion

The results of these experiments are outlined below for

both testing scenarios. It should be noted that, due to the

complexity of the C standard library, the instruction and

branch code coverage of KLEE during execution is greatly

diminished. As a control for baseline KLEE coverage, the

5The design of the qmail parser is such that many paths cannot be
explored without a symbolic input string of a certain length. This is due
to argument parsing, and the KLEE run-times grew too quickly to fully
explore the parser with a longer input string

111

Figure 3. Explored Paths and Trimmed Paths vs. Symbolic Input Length

simple “Hello, World!” program was written in C (Figure 5)

and exercised by KLEE. The resulting code coverage by

KLEE was only 17% instruction coverage and 12% branch

coverage.

Test I Results: The results comparing the difference in

growth between the total paths and trimmed paths are shown

in Table I. The length of the symbolic input string used as an

input parameter for the qmail parser was varied to exercise

an increasing amount of the code-base. Input lengths greater

than 9 characters executed too long to return results. The

percentage of total code exercised is shown in the table, as

well as the total run-time for the KLEE symbolic engine. The

number of paths explored quantify the growth in the state-

space that the KLEE engine must explore to fully exercise

the code reachable based on the symbolic input format. A

comparison between the explored paths and trimmed paths

as a function of symbolic input length is shown in Fig. 3.

Test II Results: The results from Test II (Table II)

highlight the verification benefits of restricting the com-

putational expressiveness of the program source code, a

goal of the language described in Section III-A. This test

shows the improved code coverage and decreased number

of states that must be checked when compared with a

standard implementation. These results more closely mirror

the program after the function inliner and loop unroller

described in Section III-A2. In Fig. 4, a plot provides the

number of paths the KLEE symbolic engine had to explore

in the provided time-limit before it was halted. In this test

case, the percentage of the program that KLEE was able

to explore (instruction coverage) in the set time-limit was

slightly higher for the bounded program than the unbounded

parser.

Test III Results: The results from Test III, shown in

Table III, highlight the state-space size growth advantages

of the restricted computational environment implemented via

a Crema program. The number of states that KLEE explored

is significantly reduced in the Crema parser when compared

Figure 4. Completed Paths in Time-limit as Function of Time

to similar C code from qmail, helping to empirically reaffirm

what is intuitively expected—that verification and exercising

restricted computational models is easier than fully Turing-

complete environments. When the code in Appendix C was

not modified to comment out the unbounded outer loop,

KLEE would run apparently without making progress until

the default 3 minute timeout is reached. Examining the code

coverage between the two parsers also shows the Crema

program having a considerably higher percentage instruction

coverage than when KLEE exercised qmail.

B. Results Interpretation

As shown, the restricted environment results in a clear

reduction of the state-space explosion.

Experience suggests that this reduction is significant.

Recently, NICTA was able to formally verify the seL4

micro-kernel [17] that was approx. 10,000 lines of high-level

code (automatically and provably translated into approx.

10,000 lines of C code). Larger code-bases have resisted

verification due to the state-space explosion. The results

from our experiment suggest significant reduction in the

state-space during verification (e.g., by a factor of 4 for

completed paths), greatly increasing the possible code-base

size possible to verify in this model.

We note that this reduction resulted for code that is well-

architected and written with security in mind, but unmod-

ified; for code that specifically targets such reductions, the

gains are likely to be significantly larger.

Many components of existing, unverified software projects

can be modeled in such a restricted fashion and then verified.

Components of the Linux kernel (for example) could be

modeled in a restricted environment (avoiding synchroniza-

tion and critical sections) and then verified for correctness,

improving the assurances provided by the platform.

112

Table I
QMAIL STATE-SPACE EXPLOSION REDUCTION IN RESTRICTED ENVIRONMENT

Symbolic Input Size (characters) Instruction Coverage (%) Explored Paths Trimmed KLEE Paths KLEE Run-time (s)

5 31.37 997 12 1.12

6 31.59 1780 15 2.03

7 33.13 2985 24 6.23

8 33.97 4737 33 53.27

9 34.62 7331 45 540.2

Table II
COMPLETED PATHS IN TIME-LIMIT FOR BOUNDED AND UNBOUNDED PARSER

Time Limit (s) Completed Paths in Unbounded Parser Completed Paths in Bounded Parser

2 1068 511

3 1412 847

4 1803 880

5 2115 966

6 2573 1246

7 2921 1295

8 3263 1283

9 3413 1344

10 3977 1363

20 6679 1613

30 8365 1925

40 9899 2386

60 12451 2783

Table III
QMAIL C PARSER COMPARED TO CREMA PARSER

Parser Execution Time (s) Maximum States Instruction Coverage (%) Branch Coverage (%)

Qmail C 31.50 678 44.47 33.96

Crema 28.67 76 61.97 37.74

V. RELATED WORK

A. Modeling Execution Events as an Input Language

In [18], a reference monitor is defined as an automaton

that recognizes a “language of events”. This model of ref-

erence monitors interprets the events/actions performed by

a monitored program as a stream of symbols; the reference

monitor can reject certain “inputs” as incorrect, detecting

compromises of the monitored process.

Due to the undecidability of the Halting Problem, for a

general process, the monitor is restricted to only checking

“input prefixes”. The reference monitor can detect if a

process is starting to misbehave based on certain patterns

of events, however cannot recognize more complex input

language grammar classes. With the restricted model, a

reference monitor could potentially recognize more complex

languages of inputs and possibly roll back events performed

by a compromised process after it terminated, recovering

trustworthy state.

Presently, a reference monitor is limited by two factors:

the undecidability cliff and the fact that the reference

monitor is operating with the same level of computational

expressiveness as the process it is monitoring. Similar to the

cat-and-mouse game with malware and anti-virus operating

at the same level of privilege, the fact that the reference

monitor is not more powerful than the monitored process

weakens its abilities to recognize compromise.

Automated Exploit Generation (AEG): AEG [19] and

its precursor [20] is an effort to automatically find ex-

ploitable vulnerabilities and to generate proof-of-concept

exploits for them, such as inputs that cause the computation

to be diverted to afford the attacker full control of the

target. AEG started with automatic generation of crafted

input-programs (payloads) for the classic execution model

of stack buffer overflows (described in [21]). This model

is nearly extinct in modern desktop software thanks to the

defensive measures such as DEP, ASLR, EMET, etc., which

co-evolved with the state-of-the-art offensive methods since

the 1990s; however, this model is alive and well on the

ubiquitous micro-controller firmware that appear posed to

113

drive the so-called “Internet of Things”.6

In the later work [19], the authors described AEG as a

program verification task but with a twist—the twist being

that typical safety properties are replaced with finding a

certain unexpected kind of a program execution path when

subjected to crafted inputs. From the LangSec perspective,

an AEG algorithm actually finds both a description of an

input-driven “weird machine” and the program that drives

it to some definition of an undeniably unexpected (a.k.a. “

malicious”) computation, an exploit.7

B. Common challenge for AEG and Program Verification:
the State Explosion

Both problems, verification and AEG, are related and the

research in one field impacts the other [22]. In verification,

the verifier is aiming to prove that there are no unintended

states in the program that are reachable (in many cases, in

comparison to a specification or formal model), whereas in

AEG, the generator is attempting to prove that there exists

a reachable unintended/error state.8

As these problems are closely related, they both are

impacted by the state-space explosion when mapping the

CFG for Turing-complete software programs; additionally

the Halting Problem introduces the issue of determining

whether to continue searching or stop. Computational com-

plexity of general-purpose programming environment im-

pedes automating solutions of both problems.

The general-purpose programming languages in use today

provide more computational expressiveness than is needed

to perform most input-validation software tasks. The gap

between the needed and more easily verifiable “power” and

what is available is a source of security risk [23]. This gap,

known in LangSec as the “undecidability cliff”, prevents

both formal verification and AEG tools from analyzing

completely a general, non-trivial input program [24].

VI. CONCLUSION

The authors posit that, for most common input-handling

purposes, the fully expressive, Turing-complete environment

is overly powerful and carries a significant (and realized)

risk of compromise. The majority of programming languages

aim for Turing-completeness, then focus on syntax and

library functions. The limited model and the Crema language

described in this paper have been specifically designed to not

aim for Turing-completeness, but rather with a view towards

practically and safety, to allow program-verification tools to

explore the resulting programs’ state space. By providing

6Occasionally referred in the security community as “The Internet of
Things that Explode”, for this and other reasons.

7As the noted security researcher Felix ‘FX’ Lindner put it, “You can’t
argue with a root shell.”

8Quoting [19], Casting AEG in a verification framework ensures AEG
techniques are based on a firm theoretic foundation. The verification-
based approach guarantees sound analysis, and automatically generating
an exploit provides proof that the reported bug is security-critical.

a restricted execution model and showing the verification

benefits thereof, future work can explore existing code

bases and perform analyses that identify components or sub-

systems that could be modeled in this restricted environment,

allowing for verification of code-bases currently too large to

check.

ACKNOWLEDGMENTS

This research was developed with funding from the De-

fense Advanced Research Projects Agency (DARPA)9. The

authors would like to thank Julien Vanegue and Thomas

Dullien for their input on the state-space explosion problems

prevalent in verification/AEG and Sergey Bratus for his

comments and suggestions on earlier drafts of this paper.

REFERENCES

[1] L. Sassaman et al., “Security applications of formal language
theory,” IEEE Systems Journal, vol. 7, no. 3, 2013.

[2] S. Bratus et al., “Exploit programming: from buffer overflows
to weird machines and theory of computation,” USENIX
;login:, 2011.

[3] J. Vanegue, “The weird machines in proof-carrying code,” in
Proc. First Annual Langsec Workshop, May 2014.

[4] E. Nava and D. Lindsay. (2010, Apr.) Abusing
Internet Explorer 8’s XSS filters. [Online]. Available:
http://p42.us/ie8xss/Abusing IE8s XSS Filters.pdf

[5] D. J. Bernstein, “Some thoughts on security after ten years
of qmail 1.0,” in Proceedings of the 2007 ACM Workshop
on Computer Security Architecture, ser. CSAW ’07. New
York, NY, USA: ACM, 2007, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1314466.1314467

[6] G. Richarte. (2000, Oct.) Re: Future of buffer overflows.
[Online]. Available: http://seclists.org/bugtraq/2000/Nov/32

[7] Nergal. (2001, Dec.) The advanced return-into-lib(c) exploits.
[Online]. Available: http://phrack.org/issues/58/4.html

[8] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security, ser. CCS ’07. ACM, 2007.

[9] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootk-
its: Bypassing kernel code integrity protection mechanisms,”
in Proceedings of the 18th Conference on USENIX Security
Symposium, ser. SSYM’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 383–398. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855792

[10] C. Lattner. (2015) The LLVM compiler infrastructure.
[Online]. Available: http://llvm.org/

9The views, opinions, and/or findings contained in this article are those
of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

114

[11] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Proceedings of USENIX OSDI 2008,
San Diego, CA, Nov 2008.

[12] D. J. Bernstein. (2013) qmail. [Online]. Available:
http://cr.yp.to/qmail.html

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation (3rd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2006.

[14] A. Lal, S. Qadeer, and S. Lahiri, “Corral: A whole-program
analyzer for boogie.”

[15] C. Walther, “Security applications of formal language theory,”
Artificial Intelligence, vol. 70, no. 1, 1994.

[16] I. Ghory. (2007, Jan.) Using FizzBuzz to find
developers who grok coding. [Online]. Avail-
able: http://imranontech.com/2007/01/24/using-fizzbuzz-to-
find-developers-who-grok-coding/

[17] G. Klein, “Operating system verification — an overview,”
Sādhanā, vol. 34, no. 1, pp. 27–69, feb 2009.

[18] F. B. Schneider, “Enforceable security policies,” ACM Trans.
Inf. Syst. Secur., vol. 3, no. 1, pp. 30–50, Feb. 2000. [Online].
Available: http://doi.acm.org/10.1145/353323.353382

[19] T. Avgerinos et al., “Automatic exploit generation,” Commu-
nications of the ACM, vol. 57, no. 2, pp. 74–84, 2014.

[20] S. Heelan, “Automatic Generation of Control Flow Hijacking
Exploits for Software Vulnerabilities,” Master’s thesis, Uni-
versity of Oxford, Oxford, UK, 2009.

[21] A. One. (1996, Aug.) Smashing the stack for fun and profit.
[Online]. Available: http://phrack.org/issues/49/14.html

[22] J. Vanegue, “The automated exploitation grand challenge,”
presented at H2HC Conference, Oct 2013.

[23] L. Sassaman et al., “The halting problems of network stack
insecurity,” USENIX ;login:, vol. 36, no. 6, 2011.

[24] S. Bratus and F. Lindner, “Information security war room,”
presented at the Proc. USENIX Security, 2014.

APPENDIX A.

HELLO WORLD CODE COVERAGE SAMPLE

#include <stdio.h>

int main(int argc, char ** argv)
{

printf(‘‘Hello World\n’’);
return 0;

}

Figure 5. “Hello, World” C Sample Program

APPENDIX B.

PROTOTYPE CREMA PARSER SOURCE (ABBREVIATED)

def int commands(string c)
{

string cmd
string arg
int len = str_len(c)
int itr = 0
int max_input_itr[] =
crema_seq(0, len)
foreach(max_input_itr as itr) {

if (c[itr] == ’\n’) {
if (itr > 0) {

int i = itr - 1
cmd = str_substr(
c, 0, i)
break

}
}

}
len = str_len(c)
itr = str_chr(cmd, ’ ’)
arg = str_substr(cmd, itr, 0)

if (str_compare(cmd, "rcpt") == 1) {
smtp_rcpt(arg)

} else if (str_compare(
cmd, "mail") == 1) {

smtp_mail(arg)
} else if (str_compare(
cmd, "data") == 1) {

smtp_data()
} else if (str_compare(
cmd, "quit") == 1) {

smtp_quit()
} else if (str_compare(
cmd, "helo") == 1) {

smtp_helo(arg)
} else if (str_compare(
cmd, "ehlo") == 1) {

smtp_ehlo(arg)
} else if (str_compare(
cmd, "rset") == 1) {

smtp_rset()
} else if (str_compare(
cmd, "help") == 1) {

smtp_help()
} else if (str_compare(
cmd, "noop") == 1) {

err_noop()
} else if (str_compare(
cmd, "vrfy") == 1) {

err_vrfy()
} else {

err_unimpl()
}

return 0
}

int argc = prog_arg_count()
string command = prog_argument(1)

commands(command)

APPENDIX C.

STRIPPED-DOWN QMAIL PARSER SOURCE

(ABBREVIATED)

int commands(ss,c)

115

char *ss;
struct commands *c;
{

int i;
char *arg;

// for (;;) {
if (!stralloc_copys(&cmd,""))

return -1;

for (;;) {
if (!stralloc_readyplus(&cmd,1))

return -1;
cmd.s[cmd.len] = ss[cmd.len];
if (cmd.s[cmd.len] == ’\0’)

return 0;
if (cmd.s[cmd.len] == ’\n’)

break;
++cmd.len;

}

if (cmd.len > 0)
if (cmd.s[cmd.len - 1] == ’\r’)

--cmd.len;

cmd.s[cmd.len] = 0;

i = str_chr(cmd.s,’ ’);
arg = cmd.s + i;
while (*arg == ’ ’) ++arg;
cmd.s[i] = 0;

for (i = 0;c[i].text;++i)
if (case_equals(c[i].text,cmd.s))

break;
c[i].fun(arg);
if (c[i].flush) c[i].flush();
// }

}

struct commands smtpcommands[] = {
{ "rcpt", smtp_rcpt, 0 }
, { "mail", smtp_mail, 0 }
, { "data", smtp_data, flush }
, { "quit", smtp_quit, flush }
, { "helo", smtp_helo, flush }
, { "ehlo", smtp_ehlo, flush }
, { "rset", smtp_rset, 0 }
, { "help", smtp_help, flush }
, { "noop", err_noop, flush }
, { "vrfy", err_vrfyf, flush }
, { 0, err_unimpl, flush }

} ;

int main(int argc, char ** argv)
{

if (commands(
argv[1], &smtpcommands) == 0)

die_read();
die_nomem();

}

APPENDIX D.

ABBREVIATED FIZZBUZZ LLVM IR

; ModuleID = ’Crema JIT’
target triple = "x86_64-pc-linux-gnu"

@hundred = internal global i8* undef
@loopItCnter = internal global i64 undef
@i = internal global i64 undef

define i64 @main(i64 %argc, i8** %argv) {
entry:

call void @save_args(
i64 %argc, i8** %argv)

%0 = call i8* @crema_seq(i64 1, i64 100)
store i8* %0, i8** @hundred
br label %preblock

preblock:
store i64 0, i64* @loopItCnter
br label %bodyblock

bodyblock:
%1 = load i8** @hundred
%2 = load i64* @loopItCnter
%3 = call i64

@int_list_retrieve(i8* \%1, i64 \%2)
store i64 %3, i64* @i
%4 = load i64* @i
call void @int_print(i64 %4)
%5 = call i8* @str_create()
call void @str_append(i8* %5, i8 32)
call void @str_print(i8* %5)
%6 = load i64* @i
%7 = srem i64 %6, 3
%8 = icmp eq i64 %7, 0
br i1 %8, label %15, label %17

loopcondblock:
%9 = load i64* @loopItCnter
%10 = add i64 1, %9
store i64 %10, i64* @loopItCnter
%11 = load i8** @hundred
%12 = call i64 @list_length(i8* %11)
%13 = load i64* @loopItCnter
%14 = icmp eq i64 %13, %12
br i1 %14, label %termblock, label %bodyblock

; <label>:15
%16 = call i8* @str_create()
call void @str_append(i8* %16, i8 70)
call void @str_append(i8* %16, i8 105)
call void @str_append(i8* %16, i8 122)
call void @str_append(i8* %16, i8 122)
call void @str_print(i8* %16)
br label %17

; <label>:17
%18 = load i64* @i
%19 = srem i64 %18, 5
%20 = icmp eq i64 %19, 0
br i1 %20, label %21, label %23

; <label>:21
%22 = call i8* @str_create()
call void @str_append(i8* %22, i8 66)
call void @str_append(i8* %22, i8 117)
call void @str_append(i8* %22, i8 122)
call void @str_append(i8* %22, i8 122)
call void @str_print(i8* %22)
br label %23

; <label>:23
%24 = call i8* @str_create()
call void @str_append(i8* %24, i8 32)
call void @str_println(i8* %24)
br label %loopcondblock

termblock:
ret i64 0

}

116

