
Protocol state machines and session languages:
specification, implementation, and security flaws

Erik Poll and Joeri de Ruiter

Digital Security group, Radboud University Nijmegen
Nijmegen, the Netherlands

Email: {erikpoll,joeri}@cs.ru.nl
Aleksy Schubert

Institute of Informatics, University of Warsaw
Warsaw, Poland

Email: alx@mimuw.edu.pl

Abstract—Input languages, which describe the set of valid
inputs an application has to handle, play a central role in
language-theoretic security, in recognition of the fact that
overly complex, sloppily specified, or incorrectly implemented
input languages are the root cause of many security vulnera-
bilities.

Often an input language not only involves a language of
individual messages, but also some protocol with a notion
of a session, i.e. a sequence of messages that makes up a
dialogue between two parties. This paper takes a closer look
at languages for such sessions, when it comes to specification,
implementation, and testing – and as a source of insecurity.

We show that these ‘session’ languages are often poorly
specified and that errors in implementing them can cause secu-
rity problems. As a way to improve this situation, we discuss
the possibility to automatically infer formal specifications of
such languages, in the form of protocol state machines, from
implementations by black box testing.

Keywords-protocol state machine; language-theoretic secu-
rity; formal specification; fuzzing; reverse engineering

I. INTRODUCTION

Protocol state machines, by which we mean finite state

machines or automata that describe the message sequences

that can occur as sessions for some protocol, have played an

important role in much of the security research we have done

over the years. This research investigated the security of

software for smartcards, incl. bank cards and e-passports [1],

[2], [3], [4], feature phone midlets [5], a hardware security

token for internet banking [6], [7], and networking protocols

such as SSH [8] and SSL/TLS [9]. This paper gives an

overview of the research direction that evolved here, where

state machines are used to analyse the security of software.

Motivation for writing this paper was the realisation that

the use of protocol state machines to specify session lan-

guages fits nicely with the ideas behind language-theoretic

security. After all, as soon as the interaction between two

systems not just involves some data format but also some

protocol, then the input language effectively consists of two

levels: a language of messages, which describes the data

format of individual messages sent from one party to the

other, and a language of sessions, or message sequences,

which describes valid dialogues between two parties.1

Where much of the work on language-theoretic security

focuses on the former level (and rightly so, as this is where

most of the security problems arise), the focus of this paper

is on the latter, i.e. on session languages. We explore the

differences between languages of messages and languages

of sessions, argue that the languages of protocol sessions

can and should be more explicitly and formally specified,

and show examples of security vulnerabilities that are caused

by incorrectly implementing them. We also discuss the pos-

sibilities of automatically inferring protocol state machines

from implementations. Algorithms to do this are known from

automata theory, notably Angluin’s L* algorithm [10], and

available in libraries such as LearnLib [11]. Especially in

the absence of clear specifications, this can be a useful first

step in taking a more rigorous and structured approach to

session languages.

Of course, recognising the importance of rigorously spec-

ifying, implementing, verifying, and testing protocols is

nothing new. For an interesting historical overview of work

on protocol engineering in the 1970s and 1980s we refer to

[12].

II. SESSION LANGUAGES

Many protocols involve the notion of a session, a sequence

of messages exchanged between two or more parties follow-

ing some standard pattern. For example, security protocols

such as SSH or SSL/TLS rely on very specific sequences

of messages to establish shared keys and then use these.

Implementing such a protocol then not only involves pars-

ing and interpreting individual messages, but also keeping

track of the order of these messages and checking some

interdependencies. Specifying a protocol therefore not only

1Note that it is somewhat confusing to call the session language an input
language, as it involves both inputs and outputs.

2015 IEEE CS Security and Privacy Workshops

© 2015, Erik Poll. Under license to IEEE.

DOI 10.1109/SPW.2015.32

125

involves specification of the language of messages, but also

specification of the session language.

Most protocols have a so-called happy flow, i.e. a normal

sequence of messages that happen in most or all ‘correct’

sessions. But even if the session language is effectively just a

single sequence of messages, any implementation will have

to cope with errors that deviate from this happy flow, and

do so in a right – and secure – way. Here errors can occur

in an individual message (e.g., in a cryptographic protocol,

a message with an incorrect MAC) or in the order in which

messages are received.

To handle errors a common pattern is that some errors

will cause the session to be aborted, while others are

simply ignored. Ignoring a message can happen silently,

or result in an error message to warn the other party that

a message was ignored. Which approach is taken depends

on the type of protocol, and the potential harmfulness of

the message. For example, any error in the critical phase

of a security protocol (say, during key negotiation) should

typically lead to this phase being aborted and restarted, as

these protocols are notoriously fragile: a small deviation

from the correct protocol run may completely destroy all the

security guarantees that the protocol is meant to provide.

Apart from handling errors, protocols often include cor-

rect messages that may be inserted at any stage. One

example is the by now infamous HEARTBEAT message in

TLS, which can be sent at any time during a connection

when no handshake is being performed [13]. Other exam-

ples, for SSH, are the SSH_MSG_IGNORE message, which

can be sent at any moment but should always be ignored

(this message can be used for traffic padding, to defeat

traffic analysis) and the SSH_MSG_DEBUG message which

is included for debugging purposes.

Restrictions on the order of messages also arise in many

situations where there is some form of access control. For

example, often a smartcard will only perform a security-

critical operation after it has received the correct PIN code,

and then only once. Many security requirements can in

fact be expressed by constraints on the order of messages

using, for example, temporal logic. Indeed, state machines

(or automata) have been proposed as a general framework

to define categories of security policies [14], namely those

that can be enforced by runtime monitoring.

III. IMPLEMENTING SESSION LANGUAGES

When it comes to implementing a protocol, there are

fundamental differences between message languages and

session languages.

Handling an individual incoming message can be cleanly

done in two separate stages: first parsing the message and

then processing the resulting parse tree. For the first stage

one would ideally use a parser generated from a formal

grammar. Of course, in practice these stages are often not so

cleanly separated, but mixed together in a ‘shotgun parser’

[15].
Handling the session language is messier, as it has to be

done incrementally, one message at a time. We cannot wait

for the entire session to be completed, and then feed that

whole string to a parser for the session language. If we have

a formal specification of the session language, we might be

able to generate some code from that, but this then typically

results in a skeleton of code that still has to be manually

refined to include the required functionality.

There are different ways in which an implementation can

keep track of the protocol session. A program can include

one or more variables to explicitly keep track of the protocol

state. Alternatively, a program can simply use the program

point to provide information of the protocol state; this is

what happens if we use sequential composition to compose

actions.
To illustrate these two approaches, suppose the session

of some protocol is always A;B;C;D, where A and C are

inputs and B and D the resulting outputs. This might then

be implemented as

receiveA();sendB();receiveC();sendD();

where the program point then keeps track of the session

state. Of course, the implementation should not forget how

to cope with incorrect sequences of inputs, for example by

throwing an exception when receiving an unexpected input.

Alternatively, we could use some state variable state, ini-

tialised to say 0, and implement the protocol as a repetition

of the procedure below

step() {
receiveMsg(in);
if (in==A && state==0)
{ sendB(); state=1; }

else if (in==C && state==1)
{ sendD(); state=2; }

else
{ ...// raise error }

}

Here there is a more explicit use of a state machine in the

implementation.
Of course, implementations can combine the approaches

above, or use more advanced ways to implement the desired

control flow. For example, OpenSSH, which is written in

C, uses a global array with 256 function pointers to track

the protocol state. To process a new incoming message,

this array is used to jump to the right procedure to handle

that message, based on one byte in the SSH packet that

indicates the type of the packet. The contents of the global

array are updated at various stages, to change the protocol

state. This is an efficient way to implement a state machine,

and arguably a clever use of function pointers, but trying to

understand the behaviour from the code is far from trivial.

126

Doing a security code review [16] of OpenSSH, we did

confirm that OpenSSH followed the RFCs. To do this, we

first drew protocol state diagrams, as discussed in the next

section, based on the RFCs. Then, when reading the source

code, we used these as a reference to understand and check

what the code did. We could not contemplate checking the

correctness of an implementation like OpenSSH without

drawing the protocol state machines.

IV. SPECIFICATION OF SESSION LANGUAGES

The session language of a protocol is commonly specified

in prose. Sometimes message flow diagrams or message

sequence charts are added, but usually only as examples.

Such diagrams typically abstract over the actual payloads of

messages and only look at the types of these messages. More

importantly, they usually only consider the ‘happy flow’.

When protocols are more complicated, and they for in-

stance include several happy flows, session languages can be

more conveniently – and precisely – described by finite state

machines. (Instead of a finite state machine one could of

course use a grammar or, in simple cases, a regular expres-

sion. However, a description with a state machine is usually

more natural, because the notion of ‘state’ often captures

more information than just which subsequent sequences of

messages are accepted. So it may make sense to distinguish

two states even though they accept the same language.)

Apart from the improved precision and clarity, another

advantage of a protocol state machine is that it provides a

first step towards an implementation, namely one which uses

a program variable to track the protocol state, as discussed

above. For this is it is useful if protocol states are named

or numbered. Protocol specifications are often meticulous in

defining a naming or numbering scheme for the different

message types, but often do not introduce any names for

protocol states.

We have noticed that in typical protocol specifications

the session language is less likely to be rigorously defined

than the message language. Most specifications will have

an appendix with a BNF grammar to define the format of

messages2, but many only use prose to describe the session

language. One factor explaining this, at least for RFCs, may

be that RFCs are in ASCII, so including a state machine is

tricky. Still, the RFC for TCP shows that this can be done,

as it includes a protocol state machine drawn in ASCII art

[17].

Extracting the protocol state machine from a prose de-

scription can be a lot of work. Typically, the prose will

describe constraints on correct sequences of messages, and

such constraints are then scattered throughout a long spec-

ification document (or several documents). What to do in

case of deviations from the happy flow is often left implicit.

2Of course, ideally the BNF grammar should be the specification, and
not just an informative supplement to the specification in English prose.

We once spent several days poring over the RFCs defining

SSH (RFCs 4250-4254) to understand the protocol state

machine of SSH, which is absent in the RFCs. When doing

this we realised that anyone implementing SSH will have

to do exactly the same work. Including explicit protocol

state machines in a protocol specification, even if these are

just partial state machines describing some sub-protocols,

can save programmers implementing them a lot of work.

This then also helps to ensure more uniform behaviour

across different implementations and reduces the room for

deviations from the specification, which might introduce

security flaws.

Beyond the happy flow(s)

The full state machine that has to be implemented is

always more complicated than a state machine that just

specifies the happy flow: even if all protocol runs conform to

a single fixed sequence of messages, the implementation will

have to cope with errors, which can be errors in individual

messages or errors in the order of messages.

Erroneous messages may be silently ignored by an im-

plementation or may result in the session being aborted –

and possibly restarted. In a protocol state machine, ignored

messages result in ‘self loops’, i.e. a transition from a state

back to itself. Aborting a session results in many transitions

that jump to some error state or back to an initial state.

For example, in Fig. 1, which gives the state machine of a

payment application on a bank card, we can see many self-

loops and many transitions back to the second state from

the top, which is effectively the start state of a session.

A robust implementation should be able to handle any
sequence of inputs. So for every state the state machine

should specify what should happen for every possible input.
The technical term for this is that the state machine is input-
enabled.

Trying to draw all these transitions in a state machine

quickly becomes very messy. It is not so clear what the

best way is to specify the full state diagram in practice

here. Merging transitions which have the same source and

destination state, as done in the lower diagrams in Fig. 1,

can help in keeping a state machine readable. Omitting

the transitions that abort the session or that are ignored

from the state machine, and specifying these in prose, can

be a practical option. An alternative approach, used in

StateCharts [18], is to use nested states, so that common

error transitions from a collection of states only have to be

drawn once.

V. HOW THINGS CAN GO WRONG

Incorrectly implementing the protocol state machine can

result in incompatibilities between different implementa-

tions, but also in exploitable security flaws. A flaw may

enable Denial-of-Service attacks, namely if a strange se-

quence of inputs crashes an implementation. Accepting an

127

incorrect sequence of messages in a cryptographic security

protocol can easily break security guarantees the protocol is

meant to provide. More generally, a bug in the protocol state

machine may allow an attacker to by-pass some security

check. And if a protocol consists of various sub-protocols,

which in practice is often the case, messages coming in the

wrong order can cause unwanted feature interaction between

the sub-protocols.

One extreme example of an insecure implementation of

SSH we came across was an SSH client that did not include

any implementation of a protocol state machine whatsoever

[8]. This meant that the user could for instance be asked for

a username and password before any session key had been

established. The programmers had carefully followed the

specs in implementing the handling of individual messages,

but had completely forgotten to check if these messages

came in the correct order. Obviously, the implementation

worked fine with any compliant SSH server; that there was

additional behaviour that an attacker could exploit would not

be noticed in normal use.

We discovered another security vulnerability due to a

flawed protocol state machine in a token for internet banking

used by one of the largest banks in the Netherlands [6]. This

flaw was more shocking because it was not in a small open

source code project, but in a commercial project for a bank

which presumably has been subjected to thorough security

reviews, and which left millions of customers with a flawed

(and unpatchable) device. The USB-connected device, which

contains a smartcard reader, contained a bug that made it

possible to by-pass the crucial security check – the user

pressing the OK button – with a non-standard sequence of

USB commands. So the protocol state machine implemented

in the device had one transition that should not be present,

as can be seen in Fig. 2.

Differences between implementations of the protocol state

machine may also be used for fingerprinting. Error messages

triggered by ‘incorrect’ sequences of inputs often reveal

unique characteristics of a particular implementation. For

example, analysis of electronic passports from ten different

countries revealed that the nationality could be determined

from error messages reported in abnormal sessions [3], even

though the protocols for electronic passports have been

specifically designed not to leak information to an attacker.

There is a comment hidden away in one of the documents

that make up the official specification of electronic passports

[19] about a standard error message that should be reported

in case of incorrect inputs. However, this comment is not

very clear and has apparently been overlooked in virtually

all implementations we looked at.

We conjecture that bugs in the implementation of a

protocol’s state machine are less likely to produce a pro-

grammable ‘weird machine’ [20] than bugs in the handling

of the format of individual messages. (Indeed, we have

never encountered any.) Intuitively, bugs in the protocol

state machine may allow an attacker to skip some security-

critical step; bugs in parsing the more expressive language

of individual messages are more likely to expose a lot of

variety in behaviour which an attacker can try to ‘program’

with carefully crafted inputs.

VI. MODEL-BASED TESTING OR STATEFUL FUZZING

To detect flaws in implementations, a formally specified

protocol state machine can be used for model-based testing,

where random sequences of messages are fired at an imple-

mentation under test to check if the responses match the ones

predicted by the state machine. We have for instance used

model-based testing to check the compliance of electronic

passports [4], using protocol state diagrams [5] made on the

basis of the United Nations ICAO specifications.

Model-based testing against a state machine model is

essentially a stateful form of fuzzing. Such stateful fuzzing
can be considered as a next stage after so-called protocol
fuzzing, where one fuzzes the various fields in the protocol

message format. Stateful fuzzing is supported by fuzzing

tools such as Peach [21] and SNOOZE [22]. State-based

fuzzing has for example been used on the Session Initiation

Protocol (SIP) used in VoIP [23], on IEEE 802.11 wireless

networks [24], and to a limited extent on GSM phones [25].

Of course, one might hope to avoid the whole problem

of having to look for flaws in the implementation of the

protocol state machine by generating code from some formal

specification. However, as discussed in Section III, generat-

ing implementations from specifications seems harder to do

for the session language than for the message language. Of

course, it is possible to generate code from state machines,

and various development methods provide support for this

(e.g. UML), but either the models have to be very expressive,

or what is generated is a code skeleton that still needs to be

refined manually.

VII. EXTRACTING SPECIFICATIONS FROM

IMPLEMENTATIONS

Interestingly, it is possible to automatically infer a proto-

col state machine from an implementation, using just black

box testing. The techniques for this date back to work in

automata theory, in particular Angluin’s L* algorithm [10].

We only came across this technique recently, but it has been

used for security analyses by others before, e.g. to analyse

botnets [26] and more recently web applications [27].

All that is needed to infer a state machine is a test harness

which can fire typical protocol messages at an implemen-

tation and record the resulting response. The messages that

the test harness can send should cover the different types of

messages that occur in the protocol. With such a test harness

one can then infer the protocol machine using tools such as

LearnLib [11] or Tomte [28].

128

�� ������	�
�������� ����� ������	�
������
��� ����� �������������� ����� ��	�����������	���� � ���� ���������������� ����� ����� ��!�����	�"	�����	 � ���� ��	�����
#	$��	��	� � ����������	�
�%���	

� ����� ��	�������	� ��
&&��	�����������	����������� � ���� ������	�
������

� ����� ������	�
�%���	�� ����� ��	���������	� ��
&& ������	�
�%���	
��� �����

�'

����	
�����	��� �(���

������	�
�������� ��(&) ������	�
������
��� ��(&) ������	�
�%���	

� ��(&) ��	�������	� �(��� ��	�����������	����������� � �(&) ������	�
������

� ��(&) ������	�
�%���	�� ��(&) ��	���������	� ��
&& ����	
�����	��� �(��� ������	�
�%���	
��� ��(&) �������������� �(��� ���������������� ��
&*����� ��!�����	�"	�����	 � �(&) ��	�����
#	$��	��	� � �(&)

�*

��	�����������	���� � (���������	�
�������� ��+�� ������	�
������
��� ��+�� ��	�����������	����������� � �(&) ������	�
������

� ��+�� ��	���������	� ��
&& ����	
�����	��� �(��� ��	�����������	���� � �(&) ���������������� ��
&* ��	�����
#	$��	��	� � �(&+

��	�������	� �(��� �������������� �(���

�,

����� ��!�����	�"	�����	 � (���

�-

������	�
�%���	

� �(����� ������	�
�%���	�� �(����� ������	�
�%���	
��� �(�����

������	�
�������� ��+�� ������	�
������
��� ��+�� ��	�����������	����������� � �(&) ������	�
������

� ��+�� ��	���������	� ��
&& ����	
�����	��� �(��� ��	�����������	���� � �(&) ���������������� ��
&* ��	�����
#	$��	��	� � �(&+

��	�������	� �(��� �������������� �(��� ����� ��!�����	�"	�����	 � (���

������	�
�%���	

� �(����� ������	�
�%���	�� �(���-� �)

������	�
�%���	
��� �(���&�

������	�
�������� ��(&) ������	�
������
��� ��(&) ������	�
�%���	

� ��(&) ��	�������	� ��(&) ��	�����������	����������� � �(&) ������	�
������

� ��(&) ������	�
�%���	�� ��(&) ��	���������	� ��(&) ����	
�����	��� �(��� ������	�
�%���	
��� ��(&) �������������� ��(&) ��	�����������	���� � �(&) ���������������� ��(&) ����� ��!�����	�"	�����	 � �(&) ��	�����
#	$��	��	� � �(&)

������	�
������
��� ��
&� ������	�
�%���	

� ��+����	�������	� ��(&) ��	�����������	����������� � �(&) ������	�
�%���	�� ��+�� ��	���������	� ��(&) ����	
�����	��� �(��� ������	�
�%���	
��� ��
&� �������������� ��(&) ��	�����������	���� � �(&) ���������������� ��(&) ����� ��!�����	�"	�����	 � �(&) ��	�����
#	$��	��	� � �(&)

������	�
�������� �(����� ������	�
������

� �(�����

������������	�
������
����

����������
�����������
�������
����

��������������������������������������
����

� � !� "

������
#���

����������
�����������
�������$��%���"&����������������������������
�#�'

����������$��%���"&
���(

������$��%���"&
����

������$%���"&�����������$%���"&�������
#���

��) *+	*, "

�����������
�������$%���"&
#���

�����������
�������
�#�'

��������������������
�#�-

����������$��%���"&
���(

������$��%���"&
����

������
#���

���������(�"
�-��

������$%���"&�����������$%���"&
#���

� *�+.) *+	*, "

������
#���

�*����!��	�/���0 "

���������1��
#������

���������(�"
�-��

�����������
�������
�#�'

��������������������
�#�-

����������$��%���"&
���(

������$��%���"&
����

������
#���

������$%���"&�����������$%���"&�������
#���

���������1�����
#������

���������1����
#����� ��2�* 34 �� "

���������1����2�
#�����2�

��0 *
�#�'

������
#���

���������1��������
�-��

�������
�����������
��
�#�'

�����������2�
����

������
#���

���������(�"������
#������

������������	� �����

����	��

�����

�����

������������

���������������������������
������

��������������
��������������������
�

 ����!���������

 ���%"

���#$�	���#�%#�$��

�����������&$�
��

�����

��������������
��������������������
���� ���%"

�����������&$����
��

�����������&$���
� ��'���()�$��

�����������&$����'
��'

�����

�����������*#
�������
��

Figure 1. Automatically inferred protocol state machine of a smartcard application in a bank card [1]. The top image shows the raw results, in the middle
image transitions with the same source and destination have been merged if they result in the same response, and in the bottom image all transitions with
the same source and destination have been merged in one arrow labelled ‘Other’.
In the bottom image it is easy to check that verification of the PIN, which happens in the VERIFY branch, must be taken before performing the security
critical step, which in this protocol is the branch labelled ”GENERATE AC 1st TC”.

We first used this technique to extract protocol state

machines from applications on the chips in bank cards

[1], which nearly always implement a variant of the EMV

(Europay-Mastercard-Visa) protocol. Fig. 1 gives an ex-

ample. Earlier, this technique had already been used on

electronic passports [29]. In the bank cards we found a

surprising variety in implementations, but no exploitable

security flaws.

In some cases making a test harness is very simple. For

example, our test harness for EMV bank cards only contains

129

300 lines of code. For more complex protocols, such as TLS,

making a test harness is considerably more work. Still, for a

given protocol such a test harness only has to be made once,

and it can then be used to analyse any implementation of

the protocol. This makes it worthwhile to produce such test

harnesses for important standard protocols.

The state machine models obtained in this way are only

guaranteed to be an abstraction of the implementation.

Without looking at the code of the implementation it is

impossible to exclude the possibility that there is additional

behaviour that the automated inference did not detect. So a

well-hidden backdoor (or Easter egg) in the implementation

will not be detected. Still, in our experience many flaws in

the program logic typically will be revealed.

Using a Lego robot to operate the keyboard, we also

used state machine learning to analyse the flawed internet

banking token discussed earlier. The models obtained, shown

in Fig. 2, reveal the security flaw in the original device and

confirm that this flaw has been fixed in the newer version

[7]. The models in Fig. 2 use a limited alphabet of input

messages, namely combined messages that occur together

in a normal session to perform an online payment. Inferring

the state machine of the device with a larger input alphabet

reveals a very complex state machine, shown in Fig. 3. We

see no reason for it to be so complex: the device only has

to be able to (i) ask for a PIN (which is then sent to the

smartcard), (ii) display some data, (iii) ask the user to press

OK or CANCEL, and then (iv) get the smartcard to sign

a transaction if – and only if – the user pressed OK. The

complexity is rather worrying, as it complicates the job of

ensuring that all the flows are secure. As the device is closed

source and implements a proprietary, secret protocol, we can

only guess at the causes of this complexity, and whether this

is deliberate, due to a sloppy specification of the protocol,

or due to a sloppy implementation.

Looking at networking protocols, Fiterau-Brostean at al.

used state machine inference on TCP implementations [30].

This revealed differences between the state machines imple-

mented for TCP on Windows 8 and Ubuntu Linux that can

be used for fingerprinting [30]. In fact, the differences found

are similar to those used by tools such as nmap [31] for OS

fingerprinting.

Using the technique on eight TLS implementations [9]

revealed a surprising variety in the protocol state machines:

all implement a different state machine, as shown in Fig. 4.

Most implementations have more states than expected and

have behaviour that seems unnecessary. Given that security

protocols are notoriously fragile, any superfluous behaviour

in an implementation merits serious attention. Indeed, for

three of the eight implementations, namely GnuTLS, Java

Secure Socket Extension, and OpenSSL, the spurious be-

haviour raises new security concerns, as discussed in [9].

Additionally, the state diagram inferred for OpenSSL also

revealed a security vulnerability already discovered earlier,

namely CVE-2014-0224 [32], which has been present since

the first release of OpenSSL.

The flaw in Java Secure Socket Extension (caused by the

dashed arrow in Fig. 4) has been assigned CVE identifier

CVE-2014-6593. It has independently been found by Beur-

douche et al. [33], who nicknamed it FREAK; they also

recognise the role of flawed state machines as root cause.

In some cases the spurious behaviour found in the TLS

implementations is not enough to lead to an actual exploit,

but does weaken security guarantees, and so it should be

removed. For example, the TLS handshake phase, which

establishes the session keys, ends with an integrity check

where the client and server exchange and compare MACs

(Message Authentication Codes) computed over all the

messages that were exchanged as part of the handshake.

This guarantees that they saw the same messages. However,

in GnuTLS, a HeartbeatRequest message sent during the

TLS handshake phase will corrupt this MAC, as it has the

unwanted side-effect of clearing the buffer used to store the

handshake messages. An attacker might use this to by-pass

the integrity check. Though in itself this does not provide

an exploit, it is an unwanted and unnecessary weakness.

Of course, even for the implementations where the spuri-

ous behaviour turned out to be harmless, the extra behaviour

simply should not be there, if only to avoid the extra work in

assessing the security impact. All this does raise the question

what the ‘best’ – or, the ‘correct’ – protocol state machine

for TLS is. The simplest state machines in Fig. 4 are obvious

candidates.

VIII. CONCLUSIONS

An important message of the work on language-theoretic

security is that input languages should be more precisely

defined, in order to tackle a root cause of security flaws in

software. We argue that this not only applies to the languages

of individual input messages, but also to languages of proto-

col sessions, i.e. languages of sequences of messages. These

session languages are typically (and often poorly) described

in prose, with sentences describing constraints on message

sequences scattered throughout long specifications (or even

across multiple documents that make up the specification),

and not with a clear and complete protocol state machine.

We have seen that several security flaws have their root cause

in the flawed implementation of a protocol state machine.

How large and important this category of security flaws is

remains to be seen. The differences in implemented protocol

state machines can also be used for fingerprinting.

The results obtained using state machine inference suggest

this is an interesting technique to automatically extract

protocol state machines from implementations using black

box testing. This can be a useful first step to look for strange

behaviour in an implementation. Moreover, the models ob-

tained this way can provide a first step towards clearer

130

Initialised

PIN verified

Wait for confirmation Unconfirmed cryptogram

DISPLAY DATA / ERROR
GEN CRYPTOGRAM / ERROR

PRESS OK / TIMEOUT

ENTER PIN / OK
GEN CRYPTOGRAM /

CRYPTOGRAM

ENTER PIN / OK
PRESS OK / TIMEOUT

DISPLAY DATA / OK
ENTER PIN / OK
PRESS OK / OK

DISPLAY DATA /
ERROR

PRESS OK / OK

ENTER PIN /OK

GEN CRYPTOGRAM /
CRYPTOGRAM

DISPLAY DATA / ERROR
GEN CRYPTOGRAM / ERROR

Initialised

PIN verified

Wait for confirmation

DISPLAY DATA / ERROR
GEN CRYPTOGRAM / ERROR
PRESS OK / TIMEOUT

ENTER PIN / OK GEN CRYPTOGRAM / CRYPTOGRAM

ENTER PIN / OK
PRESS OK / TIMEOUT

DISPLAY DATA / OK
ENTER PIN / OK
PRESS OK / OK

DISPLAY DATA / ERROR
GEN CRYPTOGRAM / ERROR

Figure 2. Protocol state machines of the flawed internet banking token (left) and the fixed version (right), for a restricted input alphabet [7]. In the fixed
version asking a so-called cryptogram in the bottom state results in an error, and not a cryptogram, because the user has not pressed OK yet.

s0

s1

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT

s2

USB8_CRYPTOGRAM / TIMEOUT

s3

COMBINED_PIN / TIMEOUT

s4

COMBINED_INIT / CARD_INSERTED||INSERT_OK

s5

USB6_SIGNDATA / TIMEOUT

s6

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / TIMEOUT ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT USB8_CRYPTOGRAM / TIMEOUT

COMBINED_PIN / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

ROBOT_OK / TIMEOUTROBOT_CANCEL / TIMEOUT

COMBINED_PIN / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB8_CRYPTOGRAM / TIMEOUT

USB6_SIGNDATA / TIMEOUT

s7

USB7_DISPLAY_TEXT / TIMEOUT

USB8_CRYPTOGRAM / TIMEOUT

ROBOT_OK / TIMEOUT COMBINED_PIN / TIMEOUT ROBOT_CANCEL / TIMEOUT

s8

USB7_DISPLAY_TEXT / TIMEOUT

s9

USB6_SIGNDATA / TIMEOUT

s10

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB6_SIGNDATA / LONG_ERROR ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT USB7_DISPLAY_TEXT / LONG_ERROR COMBINED_INIT / CARD_INSERTED||INSERT_OK USB8_CRYPTOGRAM / LONG_ERROR

COMBINED_PIN / OK

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT

COMBINED_PIN / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB6_SIGNDATA / TIMEOUT

USB7_DISPLAY_TEXT / TIMEOUT

s11

USB8_CRYPTOGRAM / TIMEOUT

ROBOT_OK / TIMEOUT COMBINED_PIN / TIMEOUT ROBOT_CANCEL / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT USB8_CRYPTOGRAM / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB6_SIGNDATA / TIMEOUT

USB6_SIGNDATA / TIMEOUT ROBOT_OK / TIMEOUT COMBINED_PIN / TIMEOUTROBOT_CANCEL / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT USB8_CRYPTOGRAM / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

ROBOT_CANCEL / SHORT_ERROR

COMBINED_PIN / TIMEOUT

USB6_SIGNDATA / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT

s12

USB8_CRYPTOGRAM / TIMEOUT

s13

COMBINED_INIT / CARD_INSERTED||INSERT_OK s14

ROBOT_OK / TIMEOUT

USB8_CRYPTOGRAM / TIMEOUT

COMBINED_PIN / TIMEOUT

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT

USB6_SIGNDATA / TIMEOUT

s15

USB7_DISPLAY_TEXT / TIMEOUT

s16

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB8_CRYPTOGRAM / EMPTY_CRYPTOGRAM

ROBOT_OK / TIMEOUT COMBINED_PIN / OK ROBOT_CANCEL / TIMEOUT COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / OK ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT

COMBINED_PIN / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB6_SIGNDATA / TIMEOUT

USB8_CRYPTOGRAM / TIMEOUT

COMBINED_PIN / TIMEOUT

ROBOT_OK / TIMEOUTROBOT_CANCEL / SHORT_ERROR

USB6_SIGNDATA / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT USB8_CRYPTOGRAM / TIMEOUT

s17

COMBINED_INIT / CARD_INSERTED||INSERT_OK

ROBOT_CANCEL / SHORT_ERROR

COMBINED_PIN / OK

USB6_SIGNDATA / OK USB7_DISPLAY_TEXT / TIMEOUT COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB8_CRYPTOGRAM / CRYPTOGRAM

s18

ROBOT_OK / OK

USB8_CRYPTOGRAM / TIMEOUT

COMBINED_PIN / TIMEOUT

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / TIMEOUT ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

ROBOT_CANCEL / SHORT_ERROR

COMBINED_PIN / TIMEOUT

USB6_SIGNDATA / TIMEOUT USB7_DISPLAY_TEXT / TIMEOUT

USB8_CRYPTOGRAM / TIMEOUT

s19

COMBINED_INIT / CARD_INSERTED||INSERT_OK s20

ROBOT_OK / TIMEOUT

USB8_CRYPTOGRAM / CRYPTOGRAM

COMBINED_PIN / OK

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB6_SIGNDATA / OK

USB7_DISPLAY_TEXT / TIMEOUT

ROBOT_OK / OK ROBOT_CANCEL / SHORT_ERROR

COMBINED_PIN / OK

USB6_SIGNDATA / LONG_ERROR USB7_DISPLAY_TEXT / LONG_ERROR COMBINED_INIT / CARD_INSERTED||INSERT_OK USB8_CRYPTOGRAM / LONG_ERROR

USB8_CRYPTOGRAM / CRYPTOGRAM

COMBINED_PIN / OK

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / OK ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT COMBINED_INIT / CARD_INSERTED||INSERT_OK

ROBOT_CANCEL / SHORT_ERROR

COMBINED_PIN / OK

USB6_SIGNDATA / OK USB7_DISPLAY_TEXT / TIMEOUT

USB8_CRYPTOGRAM / VALID_CRYPTOGRAM

COMBINED_INIT / CARD_INSERTED||INSERT_OK

s21

ROBOT_OK / OK

USB8_CRYPTOGRAM / TIMEOUT

COMBINED_PIN / TIMEOUT

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / TIMEOUT

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT

COMBINED_INIT / CARD_INSERTED||INSERT_OK

USB8_CRYPTOGRAM / VALID_CRYPTOGRAM

COMBINED_PIN / OK

USB7_DISPLAY_TEXT / TIMEOUT

USB6_SIGNDATA / OK

ROBOT_OK / TIMEOUT ROBOT_CANCEL / TIMEOUT COMBINED_INIT / CARD_INSERTED||INSERT_OK

Figure 3. Protocol state machine of the flawed internet banking token, for a more extensive input alphabet. This figure is not meant to be readable, but
is included to illustrate the worrying – or, from the attacker’s point of view, promising – complexity.

specifications of existing session languages. One obvious

direction for future work is applying state machine inference

to more protocols, to see how useful this technique is in

revealing strange behaviour or security weaknesses. Another

question is if we can come up with reference state machine

models of important protocols, such as TLS.

Any spurious or non-standard behaviour in a protocol

implementation can lead to insecurity, and even if it does

not, it makes it harder to check that the implementation is

secure. As has been noted many times before [34], [35], it

may be time to deprecate Postel’s Law – ‘Be conservative in

what you send, be liberal in what you accept’ –, which was

introduced in times when security was less of a concern, and

also be conservative in what an implementation accepts.

The fact that these session languages are so poorly de-

scribed in typical specifications is all the more disappointing

because there is such a nice specification formalism that can

be used for this, namely finite state machines. To summarise

our message in a slogan:

No more prose specifications of protocol state
machines!

If the full state machine is large and complex, separate

state machines of sub-protocols can be given. Introducing

names for protocol states, or protocol phases that correspond

with sets of protocol states, can be useful for talking about

the state machines, and these names can even be used as

constants in program code.

Drawing the complete protocol state machine, that is

input-enabled and describes all errors that can occur, may

result in too many transitions for the result to be conve-

niently readable. Resorting to English prose to describe the

non-happy flows may be the best (or only) option, but this

should then not be done in sentences scattered in various

places in long documents, but all in one place.

Our original motivation for looking at protocol state

machines was to formally specify and verify code [8], [5] or

to generate provably correct code [2]. However, in the end

we expect that they are more useful simply as a convenient

specification formalism: it can help designers of protocols

to clearly specify these (and encourage them to keep their

protocols simple!), help programmers in producing correct

and secure implementations, and help in the security analysis

of implementations.

ACKNOWLEDGEMENTS

The research direction presented in this paper builds on

a lot a joint work and discussion with colleagues over the

years, in particular, in roughly chronological order: Martijn

Oostdijk, Engelbert Hubbers, Wojciech Mostowski, Julien

Schmalz, Jan Tretmans, Frits Vaandrager, and Fides Aarts.

We also thank Julien Vanegue and Sergey Bratus for their

feedback on earlier versions of this paper.

131

Figure 4. Protocol state machines inferred for eight TLS server implementations. (From top left to bottom right: GnuTLS v3.3.8, PolarSSL v1.3.8, Java
Secure Socket Extension v1.8.0, OpenSSL v1.0.1, MiTLS v0.1.3, RSA BSafe C v4.0.4, NSS v3.17.1, and RSA BSafe Java v6.1.1.) The main point here
is to show the large variety; for a thorough discussion of the differences and their impact on security see [9].

REFERENCES

[1] F. Aarts, E. Poll, and J. de Ruiter, “Formal models of bank
cards for free,” in Sixth International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2013, pp. 461 – 468.

[2] E. Hubbers, M. Oostdijk, and E. Poll, “From finite state ma-
chines to provably correct Java Card applets,” in Proceedings
of the 18th IFIP Information Security Conference. Kluwer
Academic Publishers, 2003, pp. 465–470.

[3] H. Richter, W. Mostowski, and E. Poll, “Fingerprinting pass-
ports,” in NLUUG Spring Conference on Security, 2008, pp.
21–30.

[4] W. Mostowski, E. Poll, J. Schmaltz, J. Jan Tretmans, and
R. Wichers Schreur, “Model-based testing of electronic pass-
ports,” in Formal Methods for Industrial Critical Systems
(FMICS 2009), ser. LNCS, vol. 5825. Springer, 2009, pp.
207–209.

[5] W. Mostowski and E. Poll, “Midlet navigation graphs in
JML,” in 13th Brazilian Symposium on Formal Methods
(SBMF), ser. LNCS, vol. 6527. Springer, 2010, pp. 17–32.

[6] A. Blom, G. de Koning Gans, E. Poll, J. de Ruiter, and
R. Verdult, “Designed to fail: A USB-connected reader for
online banking,” in NordSec, ser. LNCS, vol. 7616. Springer,
2012, pp. 1–16.

132

[7] G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter,
“Automated reverse engineering using Lego,” in 8th Usenix
Workshop on Offensive Technologies (WOOT 2014). Usenix,
2014.

[8] E. Poll and A. Schubert, “Verifying an implementation of
SSH,” in WITS’07, 2007, pp. 164–177.

[9] J. de Ruiter, “Lessons learned in the analysis of the EMV
and TLS security protocols,” Ph.D. dissertation, Radboud
University Nijmegen, 2015.

[10] D. Angluin, “Learning regular sets from queries and coun-
terexamples,” Information and Computation, vol. 75, no. 2,
pp. 87–106, 1987.

[11] H. Raffelt, B. Steffen, and T. Berg, “LearnLib: a library for
automata learning and experimentation,” in Formal methods
for industrial critical systems (FMICS’05). ACM, 2005, pp.
62–71.

[12] G. V. Bochmann, D. Rayner, and C. H. West, “Some notes
on the history of protocol engineering,” Computer Networks,
vol. 54, no. 18, pp. 3197–3209, 2010.

[13] R. Seggelmann, M. Tuexen, and M. Williams, “Transport
Layer Security (TLS) and Datagram Transport Layer Secu-
rity (DTLS) Heartbeat Extension,” Internet Engineering Task
Force, RFC 6520, 2012.

[14] F. B. Schneider, “Enforceable security policies,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 3,
no. 1, pp. 30–50, 2000.

[15] S. Bratus, M. L. Patterson, and D. Hirsch, “From shotgun
parsers to more secure stacks,” Shmoocon, Nov, 2013.

[16] E. Poll and A. Schubert, “Rigorous specifications of the SSH
Transport Layer,” Radboud University Nijmegen, Tech. Rep.
ICIS–R11004, 2011.

[17] J. Postel, “Transmission Control Protocol,” Internet Engineer-
ing Task Force, RFC 793, 1981.

[18] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Science of Computer Programming, vol. 8, no. 3, pp.
231–274, 1987.

[19] “PKI for machine readable travel documents offering ICC
read-only access, version 1.1,” United Nations International
Civil Aviation Organization (ICAO), Tech. Rep., 2004.

[20] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and
A. Shubina, “Exploit programming: From buffer overflows to
weird machines and theory of computation,” Usenix ;login:,
vol. 36, no. 6, pp. 13–21, 2011.

[21] “Peach fuzzing platform,” http://peachfuzzer.com.

[22] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna, “SNOOZE: toward a stateful network
protocol fuzzer,” Information Security, pp. 343–358, 2006.

[23] H. J. Abdelnur, R. State, and O. Festor, “KiF: a stateful SIP
fuzzer,” in Proceedings of the 1st international conference
on Principles, systems and applications of IP telecommuni-
cations. ACM, 2007, pp. 47–56.

[24] S. Keil and C. Kolbitsch, “Stateful fuzzing of wireless device
drivers in an emulated environment,” 2007, presented at Black
Hat Japan 2007. Tool and white paper available at http://www.
iseclab.org/projects/vifuzz/.

[25] F. van den Broek, B. Hond, and A. Cedillo Torres, “Se-
curity Testing of GSM Implementations,” in Engineering
Secure Software and Systems (ESSOS), ser. LNCS, vol. 8364.
Springer, 2014, pp. 179–195.

[26] C. Y. Cho, D. Babić, E. C. R. Shin, and D. Song, “Inference
and analysis of formal models of botnet command and control
protocols,” in Proceedings of the 17th ACM conference on
Computer and Communications Security (CCS). ACM, 2010,
pp. 426–439.

[27] M. Buchler, K. Hossen, P. F. Mihancea, M. Minea, R. Groz,
and C. Oriat, “Model inference and security testing in the
SPaCIoS project,” in IEEE Conference on Software Main-
tenance, Reengineering and Reverse Engineering (CSMR-
WCRE). IEEE, 2014, pp. 411–414.

[28] F. Aarts, H. Kuppens, J. Tretmans, F. Vaandrager, and S. Ver-
wer, “Improving active Mealy machine learning for protocol
conformance testing,” Machine Learning, vol. 96, no. 1-2, pp.
189–224, 2013.

[29] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and
abstraction of the biometric passport,” in International sym-
posium on leveraging applications of formal methods, verifi-
cation, and validation (ISoLa’10), 2010, pp. 673–686.

[30] P. Fiterau-Brostean, R. Janssen, and F. W. Vaandrager, “Learn-
ing fragments of the TCP network protocol,” in Proceedings
19th Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2014), ser. LNCS, vol. 8718. Springer,
2014, pp. 78–93.

[31] G. F. Lyon, Nmap Network Scanning, 2009. [Online].
Available: https://nmap.org/book/osdetect.html

[32] M. Kikuchi, “OpenSSL #ccsinjection vulnerability (CVE-
2014-0224),” 2014, http://ccsinjection.lepidum.co.jp, ac-
cessed on August 26th 2014.

[33] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Four-
net, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzin-
dohoue, “A messy state of the union: Taming the composite
state machines of TLS,” in IEEE Symposium on Security and
Privacy. IEEE, 2015, to appear.

[34] D. Geer, “Vulnerable compliance,” Usenix ;login:, vol. 35,
no. 6, pp. 10–12, 2010.

[35] L. Sassaman, M. L. Patterson, and S. Bratus, “A patch for
Postel’s robustness principle,” Security & Privacy, IEEE,
vol. 10, no. 2, pp. 87–91, 2012.

133

