2015 IEEE CS Security and Privacy Workshops

On the Generality and Convenience of Etypes

W. Michael Petullo and Joseph Suh
Department of Electrical Engineering and Computer Science
United States Military Academy
West Point, New York USA
mike@flyn.org, joseph.suh@usma.edu

Abstract—The Ethos operating system provides a number of
features which aid programmers as they craft robust computer
programs. One such feature of Ethos is its distributed, manda-
tory type system—Etypes. Etypes provides three key properties:
(1) every Ethos object (e.g., a file or network connection) has a
declared type, (2) Ethos forbids programs from writing ill-formed
data to an object, and (3) Ethos forbids programs from reading
ill-formed data from an object. In any case, programmers declare
ahead of time the permitted data types, and Ethos’ application
of operating-system-level recognition simplifies their programs.

This paper first investigates the generality of Etypes. Toward
this end, we describe how to convert a grammar in Chomsky
normal form into an Ethos type capable of expressing exactly
the set of syntax trees which are valid vis-a-vis the grammar.
Next, the paper addresses the convenience of Etypes. If Etypes
does not make it easier to craft programs, then programmers will
avoid the facilities it provides, for example by declaring string
types which in fact serve to encode other types (here Etypes would
check the string but not the encoded type). Finally, we present
a sample distributed program for Ethos which makes use of the
techniques we describe.

Keywords—operating systems; type systems; formal languages;
recognizers

I. INTRODUCTION

The Ethos operating system provides a set of novel system
calls which aims to aid programmers as they construct robust
applications. One feature of Ethos is that its read and write
system calls are ryped—they operate on typed objects or typed
object streams instead of bytes or byte streams. We call this
subsystem Etypes. Because Etypes is implemented within the
operating-system software layer, programs cannot avoid its
protections, no matter which programming language specifies
them. This is in contrast to input-language verifiers whose
present layering leaves them discretionary (e.g., Thrift [1] and
Protocol Buffers [2]). programming-language/document type
systems (e.g., XDuce [3]), and type-safe operating systems
which require that all programs run within a particular runtime
(e.g., Singularity [4] and JX [5]).

Etypes allows programmers to define a wide range of
type definitions using Etypes Notation (eNotation), and it also
defines a corresponding Etypes enCoding (eCoding) which
serves as the wire representation for these types. Including
Etypes within the Ethos operating system—and the benefits
which arise from this layering—seemed to require a unique

Public domain.
Permanent ID of this document: b427d668b629bd45c2dadf228fedf952
Date: March 6, 2014.

© 2015, W. Michael Petullo. Under license to IEEE.
DOI 10.1109/SPW.2015.16

117

co-design of Ethos and Etypes’ declaration and encoding
formats. For example, loosely-coupled development efforts
require universally unique type identifiers without a central
naming authority, and Etypes requires that types be bound
to a description of their semantics. We depict the types and
encodings supported by Etypes in Table I.

After defining a type using eNotation, an Ethos programmer
uses a program called eg2source to generate programming-
language-specific routines to transform programming-language
types into their corresponding eCoding and vice versa. (An-
other tool, et2g, first transforms eNotation declarations into
a machine-readable form we call a type graph.) We describe
in Table II the eg2source-generated routines which we will
reference in subsequent examples. Programmers make use
of these routines in order to perform I/O. Etypes presently
supports the C and Go programming languages.

Ethos objects—files, interprocess-communication channels,
and network connections—are present as nodes in an Ethos
filesystem. Each such filesystem node bears some type’s
Universally Unique Identifier (UUID) in addition to traditional
access control information, and thus such a UUID specifies
its corresponding object’s type. Ethos consults an object’s
UUID during the course of servicing an I/O system call.
If the data to be read or written is not well-formed vis-a-
vis the UUID/type, then Ethos rejects the system call. Thus
programs running on Ethos cannot receive ill-formed input
nor produce ill-formed output. Previous work describes the
details of Etypes [6], including type hashes, which serve as
type UUIDs; annotations, which bind each type to its meaning;
and the design decisions which forbid partial reads and writes.
The same work provides a number of example programs and
compares Etypes to JavaScript Object Notation (JSON) [7] and
eXternal Data Representation (XDR) [8].

Two remaining questions have been: is Etypes sufficiently
general? And, is Etypes sufficiently convenient? Insufficient
generality would leave it impossible to write certain useful
programs on Ethos. Inconvenience would encourage program-
mers to dilute the benefits provided by Etypes. For example,
if a programmer decides to declare string types which in fact
contain encodings of other types, then Ethos would recognize
only the strings and do nothing to ensure the encoded val-
ues themselves were well-formed. Clearly, Ethos’ mandatory
enforcement—as well as the security benefits that follow from
this enforcement—depend on both generality and convenience.

To demonstrate generality, we show that eNotation can
represent context-free grammars. We demonstrate convenience
by showing (1) that a program (bnf2etn) can automatically

IEEE
computer
® psouety

Type eNotation eCoding
e byte little-endian signed or
Integers 4 intX unsigned X-bit integers,
u uintX where X is 8, 16, 32, or 64
Boolean b bool unsigned 8-bit integer
Floats ; o little-endian IEEE-754
Pointer p *T encoding method || value
Array a[n]T values
Tuple ¢ [T length || values
String s string length || Unicode values
Dictionary d [T]S length || key/value pairs
Structure n struct {...} field values
Tagged union m union {...} uint64 union tag™ || value
Any y Any type’s UUID || value
RPC F(To,T1,....Tn) uint64 func. ID || arguments

* Although eCoding encodes a union’s tag as an unsigned integer, the
decoding process throws an error if the integer is greater than or equal
to the number of fields in the union. Correspondingly, the encoding
process will not generate an invalid tag.

TABLE I: Primitive, vector, composite, and RPC type eNotation
and eCoding; UUIDs are encoded as arrays of bytes, lengths (n)
are encoded as 32-bit integers, T represents an arbitrary type, and ||
represents concatenation

Code fragment Description

TypeX x Declare variable x as type TypeX.
Construct an object of type
x=mkTypeX(..) 5) yp

Connect to host using a channel
of type RpcY.

Invoke RPC RpcYFunc;.
Accept a request to create a
channel of type RpcY.

Receive, dispatch, and respond to
an RPC within the set RpcY.

enc, dec = en.lpc(host, RpcY)

enc.RpcYFuncy(...)

enc, dec = en.Import(RpcY)

dec.RpcYHandle(enc)

TABLE II: Sample use of routines and programming-language types
which eg2source would generate from two eNotation declarations:
TypeX (a non-RPC type) and RpcY (a set of RPCs containing
Funci, Funcs, ..., Func,); routines and data structures generated by
eg2source are underlined

derive eNotation-defined representations from Backus—Naur
Form (BNF), (2) that other programs (et2g and eg2source)
can generate routines and data structures which generate and
process these representations, and (3) that similarities exist
between existing programming environments and the use of
these routines and data structures.

We next describe related work in §II. Following this, we
describe the generality and convenience of Etypes in §III
and §IV, respectively. Finally, we draw some conclusions and
propose future work in §V.

II. RELATED WORK

The language-theoretic security approach espouses two
principals: (1) input languages should grant minimal com-
putational power and (2) the components that make up a
computer system must transform between data structures and
streams of bytes in an equivalent way [9]. A consequence of
the context-free equivalence problem is that the latter must

118

be addressed by formally specifying input languages and
machine-deriving transformation routines (Etypes facilitates
this across all programs). We use the former as a foothold
as we describe why Etypes is sufficiently general.

The Chomsky hierarchy of languages organizes language
classes by the level of computational power necessary to
recognize them [10]. From the lowest to highest computational
power, the hierarchy consists of the regular languages, the
context-free languages, the context-sensitive languages, and
the unrestricted languages. It is worth noting that context-
free languages themselves can be divided into those that are
unambiguous (deterministic) and those that are ambiguous
(nondeterministic). Recognizers for the four levels of the
hierarchy require finite-state machines, push-down automata,
linear-bounded automata, and Turing machines, respectively.

The computational power of context-free grammars ap-
pears powerful enough for most computer input languages.
For example, the grammar for HTML4 is context-free, as
are the grammars for arithmetic expressions, many database
languages, and many general-purpose programming languages.
Accordingly, this paper focuses on the relationship between
Etypes and context-free grammars.

Network protocol grammars often have components which
are context-sensitive [11]. This appears accidental in some
cases; we later show that the use of Etypes sometimes reduces
the need for such computational power (e.g., as with replac-
ing HTTP chunked encoding). Etypes also provides features
similar to context sensitivity for use when such power really
is necessary. In other cases—in particular, with network- and
transport-layer protocols—it is likely that context sensitivity
will remain for some time. Yet these protocols are processed
primarily by system software, and more specialized techniques
such as PACKETTYPES [12] can aid in writing these parsers,
whether in system software or in specialized tools such as
packet capture and analysis software.

Context-free grammars are generally specified as a set
of productions, where each production consists of a sin-
gle variable along with the string of variables and terminal
characters it can produce. BNF defines one way to describe
such productions. A particularly restricted means of specifying
context-free grammars is Chomsky Normal Form (CNF) [13,
Definition 8]. In CNF, every production takes one of three
forms:

(S) =

where (S) represents the start variable; (A), (B), and (C)
represent distinct variables; and ‘a’ represents a terminal.
CNF further forbids (B) and (C) from serving as the start
variable.

There exist a number of algorithms which transform any
context-free grammar into to an equivalent grammar in CNF.
Thus we are free to compare Etypes to CNF as a means of
more generally comparing Etypes to all context-free grammars;
this is beneficial because of the simple nature of CNF. One
disadvantage of CNF is that it increases the size of a grammar.

If a grammar’s size is defined as:

Gl:=)" Y |Adal,

AeN A—a

where N is the set of the grammar’s variables, then the
most space-efficient of the known to-CNF algorithms produces
grammars of size O(|G|?) [14, Table 3].

There are a number of programming interfaces which aid
in producing statements that satisfy a particular grammar.
Existing interfaces for HTML include Python’s html module
[15] and Java’s renderSnake package [16]. Such interfaces
make available a number of expressions which produce objects
representing various language constructs. An alternative is
to build statements using templates, as with Go’s template
package [17], PHP [18], and Java’s JSP [19]. Our system bears
some resemblance to the former technique.

(Expr) ::= uint64
| (Term), (MulOp_Factor)
| (Expr), (AddOp_Term)

(Term) ::= uint64
| (Term), (MulOp_Factor)

u= ‘uint64’

= (AddOp), (Term)
= (MulOp), (Factor)
‘bool’

= ‘bool’

Fig. 1: Grammar G in BNF

III. THE GENERALITY OF ETYPES

Before we describe what Etypes can express, we must
admit what it cannot. We did not design Etypes to directly
represent string-based to-be-parsed languages such as HTML.
Lexical analysis and parsing code has historically been the
source of many bugs, including general bugs such as buffer
overflows [20, 21, 22], injection vulnerabilities [23, 24],
Dali/chameleon vulnerabilities [25, 26], and others [9, 27].

To avoid these bugs, Etypes forgoes string-based lan-
guage representations and instead makes use of an encoding
format called eCoding, along with the data description lan-
guage eNotation. Programmers who use Etypes also benefit
from a more straightforward mapping between programming-
language types and encoded data than what is found with
string-based language representations. Furthermore, the con-
ciseness of eNotation/eCoding permits us to machine-derive
recognizers for programmer-defined types. A previous publi-
cation describes this in more detail [6].

Here we focus on the use of Etypes to define a set of
types sufficient to represent the syntax trees which enumerate
a context-free language. Instead of using HTML and similar
string-based languages, Etypes-based programs communicate
using eCoding messages which contain these syntax trees (or
simpler types, when context-free input is not necessary). This

Expr union {
uint64 0 uint64
term_MulOp_Factor_1 xTerm_MulOp_Factor
expr AddOp Term 2 xExpr AddOp Term

}

Term_MulOp_Factor struct {
term 0 «Term
mulOp_Factor 1 «MulOp_Factor

1
2
3
4
5

Expr_AddOp_Term struct {
expr_0 =Expr
addOp Term 1 xAddOp_ Term
}

Term union {
uint64 0 uint64
term_MulOp_Factor_1 «Term_MulOp_Factor

AddOp_Term struct {
addOp 0 xAddOp
term_1 xTerm

}

MulOp_Factor struct {
mulOp_0 *MulOp
factor 1 xFactor

30 }

32 Factor uint64

34 MulOp bool

36 AddOp bool

119

Fig. 2: Grammar G in eNotation

means that a program which currently uses HTML would have
to be rewritten to instead make use of eCoding syntax trees.
The benefit of this work is that Ethos can then categorically
forbid ill-formed input and output, even though programmers
can continuously introduce new types to a running system.

A BNF-to-eNotation compiler: To machine-derive
eNotation from BNF, we wrote a compiler which we call
bnf2etn. bnf2etn takes as input a grammar written using BNF
in a relaxed variant of CNF and produces as output a series of
eNotation type definitions. The eNotation produced describes
a syntax tree sufficient to represent the statements which are
valid vis-a-vis the input BNF.

N N Toob >
BNF ’ bnf2etn ‘ ETN ’ et2g ‘ gﬁ;eh (;Goec?e
—
AN
Code

Program

Fig. 3: Programming with bnf2etn; a programmer combines hand-
written code with encoding and decoding routines which bnf2etn
generates

After lexically analyzing and parsing a BNF file, bnf2etn
applies the following rules to produce the eNotation type
definitions:

Rule 1 If an identifier ¢ appears on the left side of two or
more productions, then generate a tagged union
which provides one field for the right side of
each production. Set the type of each field to
represent its corresponding right side. Name the

tagged union 1.

Rule 2 If an identifier ¢ appears on the left side of only
one production, then define ¢ as a type which is
equivalent to the type of the right side.

Rule 3 If two or more variables exist on the right side

of a single production, then generate a struct
s which provides one field for each right-side
identifier. Set the type of each field to represent
its corresponding identifier. Name the struct by
combining the names of each of s’s fields.

Note that although CNF has the disadvantages we de-
scribed in §II, CNF is no less expressive than BNF. Fur-
thermore, one could write a compiler that accepted other
forms, albeit with more complex transformation rules. It is
also worth mentioning that while our automatic tool demon-
strates generality, it does not preclude human-written types.
In some cases, human-written eNotation will likely remain
more concise and convenient to reason about than machine-
generated eNotation for some time, much as was the case with
programming-language compilers until the science of optimiz-
ing programming-language compilers was better understood.

Once bnf2etn produces eNotation, a programmer can use
et2g and eg2source to generate routines which process the
types described by the eNotation [6]. Assuming that bnf2etn
places its output in a file called fypes.t, then executing et2g
types.t will produce a type graph which describes the types in a
machine-readable form. Executing eg2source types generates
a programming-language type corresponding to each eNotation
type defined in fypes.t, along with the routines which transform
these programming-language types to eCoding and vice versa.
We summarize the process in Figure 3. §IV provides an
example which better describes this generated code.

A grammar example: Consider the grammar G for arith-
metic expressions which we depict in Figures 1-2. Figure 1
describes G using BNF in CNF, and Figure 2 depicts the
corresponding eNotation as produced by bnf2etn. In this case,
bnf2etn lexically analyzes and parses the description of G
which we depict in Figure 1, produces a syntax tree which
represents G itself, and applies its rules to the syntax tree to
produce the output in Figure 2 (which itself can represent yet
other syntax trees, these corresponding to the strings in). Of
course, any context-free grammar described using this notation
could be processed in the same way.

Lines 1-5 Application of Rule 1 to the variable (Expr).

Lines 7-10 Application of Rule 3 to the variables (Term)
and (MulOp _Factor).

Lines 12-15 Application of Rule 3 to the variables (Expr)
and (AddOp_Term).

Lines 17-20 Application of Rule 1 to the variable (Term).

Lines 22-25 Application of Rule 3 to the variables
(AddOp) and (Term).

Lines 27-30 Application of Rule 3 to the variables
(MulOp) and (Factor).

Line 32 Application of Rule 2 to the variable (Factor).

120

Line 34 Application of Rule 2 to the variable
(MulOp).
Application of Rule 2 to the variable

(AddOp).

Line 36

There are three characteristics of G and the corresponding
eNotation which merit further explanation. First, syntax tree
validity is equivalent to type system validity. Conversely,
Etypes rejects invalid syntax trees and thus no process can
receive one from or produce one for another process.

Second, what at first appear as terminals (i.e., ‘uint 64’
and ‘bool’ in G), are, in fact, a reference to some type already
known to Etypes. True terminals are of less use here, since
they often merely serve to allow the encoding of syntax trees
as strings, as with C’s ‘while’, ¢;’, or ‘{’. Since Etypes
instead makes direct use of syntax trees, the information which
C conveys with keywords such as ‘while’ is in Etypes
represented by the tag present in a union’s encoding. While
a grammar for C might define the variable (Integer) using a
regular expression made up of the terminals ‘0°, ‘1°, ..., ‘9’,
Etypes is free to simply use the existing type ‘uint64’.

Finally, the use of terminals to reference known Etypes
adds some degree of expressiveness to our use of context-
free grammars. Many network protocols contain portions that
are not context-free, such as fields which are preceded by
their length [11]. (As with HTML, we are not concerned
with encoding existing network protocols using Etypes, but
rather with showing Etypes is expressive enough to specify
replacement protocols.) Since Etypes provides arrays (vectors
of a fixed length) and tuples (vectors of arbitrary lengths),
terminals defined as these types provide features resembling
some of those found in context-sensitive languages.

In some cases, context-sensitivity is accidental and be-
comes unnecessary due to the way Etypes integrates with
Ethos. For example, Etypes objects bear a type UUID. This
more robustly provides file descriptions than HTTP, and it
replaces the use of MIME-type deliminator fields, a context-
sensitive feature. Likewise, Etypes replaces HTTP’s chunked
encoding with encodings where each “chunk” is a valid type
with a self-evident length, albeit only one piece of a larger
valid type such as a tuple, array, or dictionary. Properly
handling chunked encoding as found in HTTP has been the
source of security vulnerabilities [28, 29].

Blinded data: Through its use of Etypes, Ethos applies
grammar recognition before any program receives data as
input and before any generated output can be consumed by
another program. For this to be efficacious, programs ought
to avoid blinding their outputs. For example, an encrypted
or compressed output would not appear in its expected form,
and thus might be rejected by Etypes’ recognizer. Encryption
follows from the semantics of Ethos’ system calls. Since
the operating system performs encryption and decryption, the
operating system remains able to recognize data while it is still
in its cleartext form. Other benefits arise from this design [30],
and a similar technique could provide compression services.

Specialized type systems: There exist many specialized
type systems which provide properties absent from Etypes.
These include linear types [31], which ensure at most one
reference to each object; dependent types [32], where values

37 void main() {

38 Encoder enc, Decoder dec = en.lpc(hostname, CalcServer)

40 // Build expression tree.

41 MulOp_Factor opFactor = mkMulOp Factor(true, 7)

42 Term_ MulOp Factor termOpFactor = mkTerm MulOp Factor(9, opFactor)
43 Term term = mkTermTerm MulOp Factor(termOpFactor)

44 AddOp Term opTerm = mkAddOp Term(true, term.term MulOp Factor 1)
45 Expr_AddOp_Term exprOpTerm = mkExpr_AddOp_Term(5, opTerm)

46 Expr expr = mkExprExprOpTerm (exprOpTerm)

48 enc.CalcExpr(expr.expr_AddOp_Term_2)

49 dec.CalcHandle(enc) // Receive response.

50 }

Fig. 4: Calculator client in pseudo code with the routines and data structures generated by eg2source underlined

void main() {

52 Encoder enc, Decoder dec = en.Import(CalcServer)

53 forever {

54 dec.CalcHandle(enc) // Handle receiving RPC.

55}

56 }

58 void rpcCalcExpr(Encoder enc, uint64 calllD, Expr expression) {

59 uint64 result = calcExpr(expression) T

60 enc.CalcExprReply(result)

61 }

63 uint64 calcExpr (Expr expr)

64 uint64 result =

65 switch typeof(expr) {

66 case uint64:

67 result = expr.data

68 case Term_MulOp_Factor:

69 Term_MulOp_Factor tf = (expr.data.term_MulOp_Factor_1)

70 if (tf.mulOp_Factor_1.mulOp_0) {

71 result = calcTerm(tf.term_0) x calcMulOpFactor(tf.mulOp_Factor_1)
72 } else {

73 result = calcTerm(tf.term_0) + calcMulOpFactor(tf.mulOp_Factor_1)
74 }

75 case Expr_AddOp_Term:

76 Expr AddOp Term et = (expr.data.expr AddOp Term 2)

77 if (et.addOp_Term_1.addOp 0) {

78 result = calcExpr(et.expr_0) + calcAddOpTerm(et.addOp_Term_1)
79 } else {

80 result = calcExpr(et.expr 0) — calcAddOpTerm(et.addOp Term 1)
81

82 default:

83 panic (" Il —formed”) // Ethos prevents.

84

86 return result

87 }

Fig. 5: Calculator server in pseudo code with the routines and data structures generated by eg2source underlined; some routines, such as

calcMulOpFactor, are not shown

influence types; and union types [33], which permit only
operations valid for two or more types. We designed Etypes
to be general and to tightly integrate with many programming
languages. Thus Etypes is less exotic; for example, an Etypes
graph built using pointers might contain cycles or aliases,
and neither Etypes nor many programming languages’ type
systems provide a way to prevent this. Etypes leaves such
checks to program logic and more exotic languages at the
upper layers of the software stack.

IV. THE CONVENIENCE OF ETYPES

Of course, programmers could merely declare that their
programs produce and consume strings, which in turn could

121

represent arbitrary data. This would cause Ethos programs
to devolve back into resembling many of today’s existing
programs: Ethos could verify the validity of these strings, but
would be unable to check the encoded data they bear. Thus it
is important that Etypes provide mechanisms which are easier
to use than encoding to and parsing strings.

Indeed, Etypes does reduce the number of lines of code
required by input handling routines. Previous work described
the tens-of-thousands of lines of parsing code present in
many existing applications [6]. Generating output under Etypes
requires no more effort than existing routines for producing
outputs such as HTML.

A client example: Figure 4 lists pseudo code which defines
a program capable of evaluating an arithmetic expression
by making use of an RPC service. The types and routines
that were generated by bnf2etn/et2g/eg2source are underlined.
Here Etypes would ensure that the encoding that represents an
RPC call—which takes the form of a method ID, call ID, and
(Expr)—is well-formed before sending the encoded RPC call
across a network connection.

Line 38 establishes a connection to the RPC server at host-
name which implements the CalcServer interface. Lines 41-46
build the arithmetic expression “5 + 9 x 7”. We note that the
manner in which the program builds its encoded expression
using the mk routines resembles Python’s html module, etc.
The difference is that eg2source generates the mk routines
from eNotation descriptions. Line 48 invokes the calculate
expression RPC on the server, and Line 49 receives the result
from the server.

A server example: Figure 5 lists pseudo code which defines
an RPC server capable of evaluating arithmetic expressions.
Etypes ensures the server receives only well-formed data.

Line 52 receives a connection to an RPC client, and Line 54
receives and dispatches RPC requests. Lines 58—61 implement
the skeleton function rpcCalcExpr, which the RPC dispatching
function calcHandle calls upon receiving a CalcExpr request
from the client. rpcCalcExpr calls calcExpr, listed on Line 48.

calcExpr contains two nested conditionals (the second
conditional is not necessary if expr.type is uint64). The first
identifies the type of expression received (recall that the Expr
type is a tagged union) and acts accordingly. The second
conditional inspects the operator boolean to determine whether
the expression makes use of +/x or —/~+.

Not shown is the code for calcTerm, calcMulOpFactor,
and calcAddOpFactor, but these functions resemble calcExpr.
calcExpr and the other functions calcExpr invokes to evaluate
an expression resemble the code that would otherwise be
necessary in an expression compiler, albeit without the lexical
analysis and parsing steps.

A relaxation of CNF and an HTML-like grammar: While
the grammar in Figure 1 is in CNF, bnf2etn’s normal form
actually permits more natural productions. The rule which in
CNF allows productions of the form:

in bnf2etn’s normal form is less strict, namely:

<X0> = <X]>, ey <Xn>,

where each (X;) is a variable and there is no requirement that
each 7 be unique (i.e., here a variable can appear more than
once on the right side, and the left-side variable can also appear

on the right side.)

The grammar depicted in Figure 6 makes use of bnf2etn’s
normal form to define a markup language named HYPER in
a straightforward way. This makes it easier to reason about
the grammar than if it had been specified using strict CNF.
We present the corresponding eNotation in Figure 7, and

122

Document) ::
Head) ::
Title) ::

= (Head), (Body)
= (Title)

(
(
(‘string’

(Body) ::= (Markup), (Markup)
| <Markup>

(Markup) ::=
(Emph)
(Hyper)
(OrdList)
(List)
(Markup), (Markup)

‘string’
\
\
\
|
|

‘string’
= (Reference), (Label)

‘string’
¢ L
string

OrdList) ::= (OrdListPair)

OrdListPair) := (OrdListltem), {(OrdListltem)

OrdListltem) ::= ‘string’

OrdListltem) ::= (OrdListPair)

List) ::= (ListPair)

ListPair)

(Listltem), (ListItem)

Listltem) ::= ‘string’

(
(
{
(
(
(
(
(
(
{
(
(

Listltem) ::= (ListPair)

Fig. 6: Grammar HYPER in BNF

Figures 8-9 depict pseudo code which generates and prints
a HYPER ordered list.

We depict in Figure 10 a code fragment in Java/render-
Snake which generates an ordered list. There is little difference
in programming complexity between this code and the Etypes
code in Figure 8. This should come as no surprise, because we
already observed that eg2source-generated routines resemble
existing encoding routines in form.

At first glance, the code in Figure 9 might appear more
complicated, especially when one considers that such code
must be implemented for each type (i.e., (Head), (Title),
(Body), etc.). However, this is always the case when processing
syntax trees. Indeed, eNotation helps because it removes the
requirement for lexical-analysis and parsing.

A final consideration is the requirement for defining types
in eNotation, separate from work in a traditional programming
language. This might appear inconvenient at first, yet such
specifications are unavoidable in loosely-coupled distributed
systems. For example, RFCs are examples of these types of
specifications, albeit in less formal form. Thus eNotation helps
programmers specify communication formats in a formal, but
programming-language independent manner. The authors of

o wn kW —_
—

© oo

11

13

Document Head Body

Head Body struct {
Head 0 xHead
Body 1 Body

Head Title
Title string

Body union {
Markup_Markup_0 «Markup_Markup
Markup_1 Markup

14 }

16
17
18
19
20
21
22
23

25

27

Markup union {

str 0 string

Emph_1 «Emph

Hyper_2 xHyper

OrdList_3 =OrdList

List_4 «List

Markup_Markup_5 «Markup_Markup
}

Markup_Markup struct {
Markup_0 Markup
Markup_1 Markup

28 }

30
31

33
34
35
36

38
39
40
41

43
44
45
46

48
49
50
51

53
54

56
57

Emph string
Hyper Reference Label

Reference_Label struct {
Reference 0 xReference
Label 1 xLabel

}

Reference string

Label string

OrdList OrdListPair

OrdListPair OrdListltem OrdListltem

OrdListltem_OrdListltem struct {
OrdListltem 0 OrdListltem
OrdListltem 1 OrdListltem

}

OrdListltem union {
str_0 string
OrdListPair 1 xOrdListPair

}

List ListPair
ListPair Listltem Listltem

Listltem_Listltem struct {
Listltem O Listltem
Listltem 1 Listltem

59 }

61
62

Listltem union {
str_0 string

63 ListPair 1 xListPair
64 }
Fig. 7: Grammar HYPER in eNotation
1 OrdList ol = mkOrdList("One”,
2 mkOrdListPair ("Two”,
3 mkOrdListPair (" Three”,
4 mkOrdListPair ("Four”, “Five”))))

Fig. 8: Pseudo code to generate a HYPER ordered list

123

void printOL (OrdList ol, int =i) {

1

2 switch typeof(ol.OrdListltem_0) {

3 case string:

4 print(xi + ”. 7 + ol.OrdListltem_0.str_0)
5 case OrdListPair:

6 printOL (ol. OrdListltem_0.OrdListPair_1, i)
7 default:

8 panic (" Ill —formed”) // Ethos prevents.

9 1
10 *i += 1
11 switch typeof(ol.OrdListltem_1) {

12 case string:
13 print(xi + ”. 7 + ol.OrdListltem 1.str 0)
14 case OrdListPair:
15 printOL (ol . OrdListltem_1.OrdListPair_1, i)
16 default:
17 panic (" Ill —formed”) // Ethos prevents.
18
19 }
Fig. 9: Pseudo code to print a HYPER-encoded ordered list
1 HtmlCanvas html = new HtmlCanvas() ;
2 html
3 .ol

() .content ("One”)
() .content ("Two”)
() .content (" Three”)
() .content (”Four”)
() .content (" Five”)
)3

Fig. 10: Java/renderSnake code to generate an HTML ordered list
PACKETTYPES [12] made a similar observation.

V. CONCLUSION

bnf2etn shows that eNotation can specify types with an
expressiveness that is equivalent to context-free grammars.
Context-free grammars, in turn, are sufficient for express-
ing constraints on most computer input. eNotation also pro-
vides some context-sensitive features, and Etypes addresses
without context-sensitivity certain requirements that existing
network grammars address using context-sensitive grammars
(e.g., HTTP’s MIME-type deliminator fields and chunked
encoding). Thus eNotation is sufficiently general to describe
all permitted user-space inputs and outputs, and Etypes is
sufficiently general that it can perform type checking on all
user-space input and output. Ethos applications cannot receive
ill-formed input nor produce ill-formed output.

bnf2etn also shows that eNotation remains convenient to
use, even when handling sophisticated types. This is necessary
because otherwise programmers might declare their programs
to consume and produce strings, even though the strings
themselves contain the encodings of other types. First, the use
of eNotation allows programmers to avoid writing the lexical
analyzers and parsers which would convert strings to their
encoded type and vice versa. Second, bnf2etn produces func-
tions which generate the various types necessary to express the
constructs described by its BNF input. Finally, eNotation serves
to formally document communication formats for loosely-
coupled distributed systems much like PACKETTYPES and
similar systems. Thus it is less work to use Etypes properly
than it is to abuse it.

Future work on bnf2etn includes further relaxing the re-
quirement that its input conform to CNF. Yet more permissive

forms of BNF might reduce the number of productions in
input grammars, simplify the types that bnf2etn generates, and
produce types which more closely resemble the form expressed
by the original grammar.

Perhaps a larger task involves investigating the design of
a new programming language which would unify the defini-
tion of programming-language types with the production of
Etypes type graphs. It appears that removing the need for
eNotation definitions outside of a program’s programming-
language specification would further improve convenience,
even while continuing to generate the type graphs necessary
for integration with Ethos and other languages.

ACKNOWLEDGMENTS

The authors would like to thank all of the researchers who
have contributed to Jon Solworth’s Ethos project, in particular
Wenyuan Fei and Pat Gavlin for their work on Etypes. Kyle
Moses also provided a great deal of support, mainly in the form
of patience as we discussed various pieces of this paper. The
comments from our anonymous reviewers also greatly helped
us revise our initial drafts.

REFERENCES
(1]
(2]

“Apache thrift,” https:/thrift.apache.org/ [Accessed Feb 19,
2015].

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting
the data: Parallel analysis with Sawzall,” Scientific Program-
ming, vol. 13, no. 4, pp. 277-298, Oct. 2005.

H. Hosoya and B. C. Pierce, “XDuce: A statically typed XML
processing language,” ACM Trans. Internet Technol., vol. 3,
no. 2, pp. 117-148, May 2003.

G. C. Hunt and J. R. Larus, “Singularity: rethinking the software
stack,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2, pp. 37-49, 2007.
M. Golm, M. Felser, C. Wawersich, and J. Kleinoder, “The JX
operating system,” in Proc. of the USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2002,
pp. 45-58.

W. M. Petullo, J. A. Solworth, W. Fei, and P. Gavlin, “Ethos’
deeply integrated distributed types,” in Proceedings of the 2014
IEEE Security and Privacy Workshops. New York, NY, USA:
IEEE, May 2014.

D. Crockford, “RFC 4627: The application/json media type for
JavaScript Object Notation (JSON),” Jul. 2006, status: INFOR-
MATIONAL.

M. Eisler, “RFC 4506: XDR: External data representation stan-
dard,” May 2006, status: INFORMATIONAL.

L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina,
“The halting problems of network stack insecurity,” ;login: the
USENIX Association newsletter, vol. 36, no. 6, pp. 22-32, Dec.
2011.

N. Chomsky, “Three models for the description of language,”
IRE Transactions on Information Theory, vol. 2, pp. 113-124,
1956.

D. Davidson, R. Smith, N. Doyle, and S. Jha, “Protocol nor-
malization using attribute grammars,” in Computer Security—
ESORICS 2009. Springer, 2009, pp. 216-231.

P. J. McCann and S. Chandra, “Packet types: Abstract specifi-
cation of network protocol messages,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. New York, NY, USA:
ACM, 2000, pp. 321-333.

N. Chomsky, “On certain formal properties of grammars,”
Information and Control, vol. 2, no. 2, pp. 137-167, June 1959.

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

124

[14]

[15

—_—

[16
[17

—_

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32
[33]

—

M. Lange and H. Leif, “To CNF or not to CNF? An efficient
yet presentable version of the CYK algorithm.” Informatica
Didactica, vol. 8, 2009.

“Python html package,” https://pypi.python.org/pypi/html/ [Ac-
cessed Dec 23, 2014].

“renderSnake,” http://rendersnake.org/ [Accessed Dec 23, 2014].
“Go htmltemplate package,” http://golang.org/pkg/html/
template/ [Accessed Dec 23, 2014].

“PHP: Hypertext Preprocessor,” http://www.php.net/ [Accessed
Dec 23, 2014].

“JavaServer pages technology,” http://www.oracle.com/
technetwork/java/javaee/jsp/index.html/ [Accessed Dec 23,
2014].

“CVE-2011-3908,” http://web.nvd.nist.gov/view/vuln/detail?
vulnld=CVE-2011-3908 [Accessed Feb 24, 2015], December
2011, US National Vulnerability Database.

“CVE-2011-3906,” http://web.nvd.nist.gov/view/vuln/detail ?
vulnld=CVE-2011-3906 [Accessed Feb 24, 2015], December
2011, US National Vulnerability Database.

“CVE-2011-3025,” http://web.nvd.nist.gov/view/vuln/detail?
vulnld=CVE-2011-3025 [Accessed Feb 24, 2015], February
2012, US National Vulnerability Database.

R. J. Hansen and M. L. Patterson, “Guns and butter: Towards
formal axioms of input validation,” 2005.

Z. Su and G. Wassermann, “The essence of command injection
attacks in Web applications,” ACM SIGPLAN Notices, vol. 41,
no. 1, pp. 372-382, Jan. 2006.

F. Buccafurri, G. Caminiti, and G. Lax, “Fortifying the Dali
attack on digital signature,” in Proceedings of the 2nd Inter-
national Conference on Security of Information and Networks.
New York, NY, USA: ACM, 2009, pp. 278-287.

S. Jana and V. Shmatikov, “Abusing file processing in malware
detectors for fun and profit,” in Proc. IEEE Symp. Security and
Privacy, San Francisco, CA, May 2012.

L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto,
“Security applications of formal language theory,” IEEE Systems
Journal, vol. 7, no. 3, pp. 489-500, 2013.

“CVE-2002-0392,” http://web.nvd.nist.gov/view/vuln/detail?
vulnld=CVE-2002-0392 [Accessed Feb 24, 2015], April 2002,
US National Vulnerability Database.

“CVE-2013-2028,” http://web.nvd.nist.gov/view/vuln/detail?
vulnld=CVE-2013-2028 [Accessed Feb 24, 2015], February
2013, US National Vulnerability Database.

W. M. Petullo and J. A. Solworth, “Simple-to-use, secure-
by-design networking in Ethos,” in Proceedings of the Sixth
European Workshop on System Security. New York, NY, USA:
ACM, Apr. 2013, https://www.ethos-os.org/papers/.

P. Wadler, “Linear types can change the world!” in IFIP TC 2
Working Conference on Programming Concepts and Methods,
M. Broy and C. Jones, Eds. Sea of Galilee, Israel: North
Holland, 1990, pp. 347-359.

P. Martin-Lof, “Intuitionistic type theory,” 1984.

A. Igarashi and H. Nagira, “Union types for object-oriented
programming,” in Proceedings of the 2006 ACM symposium on
Applied computing. New York, NY, USA: ACM, 2006, pp.
1435-1441.

