
Nom, a byte oriented, streaming, zero copy, parser combinators library
in Rust

Geoffoy Couprie

Software Security & Architecture Consultant

Nantes, France

contact@geoffroycouprie.com

Abstract— The recently created language Rust has been pre-
sented as a safer way to write low level code, even able to replace
C. Is it able to produce safe and efficient parsers? We show
that Rust’s features, like slicing, allow for powerful memory
management, and that its type safety helps in writing correct
parsers. We then study briefly how it can make streaming
parsers, and how to provide better usability in a parsing library.

I. INTRODUCTION

The facilities offered by the Rust language for safe mem-

ory manipulation[1] and low level code[2] make it well

suited for parsers. As part of development at VideoLAN,

we studied file and network parsers, the most dangerous part

of the VLC media player application: almost all the reported

vulnerabilities are related to demuxers, the network, video

and audio format parsers[3]. This is due in part to the use

of handwritten parsers in C and C++, languages that do not

make it easy to write memory safe code[4]. This is also due

to the complexity of supporting audio and video file formats:

they are all very different, have unspecified bugs, undefined

parts in their specs, and common (but unspecified) practices

that must be followed. Those constraints make the parsers

hard to follow, and their modifications bug prone.

While there is no project in the shorter or longer term to

integrate Rust code directly in VLC media player, we decided

to investigate its use in replacing some of the underlying C

libraries used by VLC. It should be possible to make a Rust

library with the same API as a C library, although we are

not aware of any attempt at that project right now.

Parser combinators seemed a good way to implement

safer parsers, as they allow for fast experimentation and

reconfiguration.

The memory ownership system in Rust allows the devel-

oper to reference an immutable subset of an array everywhere

in the code, without modifying or copying that array, so we

set out to test a zero copy (as much as possible) parser in that

language. Another interesting approach to test with parser

combinators is to stream the parsing. Streaming parsers can

have two modes. Push streaming parses data as soon as it

comes from the source, is stateless and mainly driven by the

source (useful for proxies and stoe.Pull streaming is driven

by the data consumer, and has specific logic for state machine

handling and seeking.

Since one of the goals was to write file and network

parsers, we choose to work at the byte level, as much as

possible, but we will see that Rust generics allow work on

almost any data type.

II. RUST

Rust is a language designed for memory safety and

concurrency, developed by Graydon Hoare since 2006 and

sponsored by Mozilla since 2009. It is now at 1.0.0-alpha

state (as of January 2015) and will reach the final 1.0

in the following months. It is the language of choice for

Servo, Mozilla’s browser research project, and it has been

announced[5] that some components of Firefox will soon be

written in Rust.

Developing in this language has been a challenge in the

recent years, since a lot of features were added and removed,

following research and tests. A large part of the language

has been simplified and abstracted in libraries. Still, their

approach of compiler development - do not fix bugs, fix

bugclasses - has produced a solid platform to write robust

code.

A. Error management

As one of its basic principles, Rust does not allow null

pointers. It instead encourages the developer to employ other

errors abstractions than integers, through enumeration types

like Option or Result. They offer a semantic differentiation

between values and errors, allow method chaining on values

and error propagation. Contrary to most languages, where

error condition checks are optional and made explicit by

writing them, in Rust, errors are checked by default, and

ignoring the error, by unwrapping the Option or Result, is

made explicit.

A facility for exceptions exists, but is frowned upon for

common error management, and left for undefined cases in

code abstracted by threads. This approach joins the Erlang

one, where letting code crash is preferable to handling every

exceptional case. This keeps a manageable software base

through the use of small, easy to restart processes.

B. Ownership and memory management

Memory management is handled at compile time, by

deciding who owns a particular memory zone, and when it

can be safely removed[6]. The compiler will refuse to build

code if memory is used unsafely, or if it cannot decide which

thread or code block owns a variable. It will insert allocation

and deallocation code right where it is needed, and can use

2015 IEEE CS Security and Privacy Workshops

© 2015, Geoffroy Couprie. Under license to IEEE.

DOI 10.1109/SPW.2015.31

142

Listing 1. Slice implementation

pub s t r u c t S l i c e <T> {
pub d a t a : ∗ c o n s t T ,

pub l e n : u s i z e ,

}

any allocator the developer wishes to provide. In the past, a

garbage collection system was included in the language, but

improvements to the ownership system made it easier to rely

only on the compiler, so the garbage collector was extracted

in a library[7]. Most of the time, the Rust compiler is able

to handle anything a garbage collector can do.

Data is defined as immutable by default, making it a lot

easier for the compiler to reason about code, and for the

developer to find the parts of the code where it can be

mutated. Here again, we can compare common program-

ming languages like C where mutability is the default, and

immutability is made explicit by const tags, while in Rust,

mutability is made explicit by mut tags. This gives assurance

to the compiler and the developer than functions will not

modify their input.

Moreover, immutable data can be safely transferred be-

tween threads, since it is guaranteed to have no concurrent

modifications, so synchronization primitives like mutexes can

be removed. In other cases, with mutable data, the ownership

inference system will decide that no concurrent read and

write will happen on a memory zone. When we still want

concurrent modifications, some types provide mutexes and

other primitives.

In some cases, memory has to be handled by hand, like

when interfacing with specific C code, or in data structures

like a doubly linked list, the language provides an unsafe
tag to wrap that code. This creates a contract between

the developer and the compiler: the compiler assumes that

whatever is done inside the unsafe code part has been written

carefully, and on that assumption, verifies the rest of the

system.

By isolating the parts of the code that can mutate data or

manipulate data unsafely, we can build complex code relying

on the compiler’s verification.

C. Zero copy support

A large part of array or list manipulations is done through

slices, subsets of the data structure used. It is naturally usable

with byte arrays and bit vectors, making it suitable for low

level manipulations. The underlying implementation of slices

for buffers is as displayed in the listing 1.

It contains a pointer to an array of the generic type T,

and the length of the slice. With the compiler’s work on

ownership inference, we can pass around subsets of a buffer

everywhere without copying the data, and without worrying

that the original buffer would be deallocated. This property

is a fundamental feature of nom.

Listing 2. Parser result enumeration

pub enum Needed {
Unknown ,

S i z e (u32)

}
pub enum I R e s u l t <I , O> {

Done (I ,O) ,

E r r o r (E r r) ,

I n c o m p l e t e (Needed)

}

III. PARSER COMBINATORS

Parser combinators are recursive descent parsers relying on

small, reusable parsing components called recognizers, and

combining them for more complex grammars. They are often

implemented in functional languages, since the easy use of

higher order functions and monadic constructions helps in

constructing them, although they are not restricted to the

functional languages[9]. They are well suited to implement

context-free grammars, although with less capacity at error

recovery than common parsers.

By writing small, reusable recognizers, we can make them

easier to test for various inputs:

• what happens if the byte is outside of the ASCII range?

• what happens if the input array is empty?

• what happens if the input array is larger than requested?

Recognizers usually take an input array, and return either

an error, or a tuple containing the recognized part, and the

rest of the input. This tuple is often a cause of a lot of data

copying between parsers.

The combinators take the output of the recognizers and

decide what should be done, through simple constructions,

like choosing the first correct result, chaining correct results,

repeating the parser and assembling results in a vector.

The recognizers and combinators can be made completely

generic, and work on various types of data, thus allowing

designs where data is transformed as soon as possible to the

desired output format.

Since they are also reusable, we can build partial parsers

to handle just the part of the data we need, and separate it

cleanly in the state machine.

Finally, the way recognizers are used tends to produce a

code architecture matching closely the grammar, making it

easy to review and modify.

IV. NOM, A PARSER COMBINATORS LIBRARY

WRITTEN IN RUST

A. Implementation

Creating a parser combinator library is mostly straightfor-

ward. It needs a sum type holding the different results of

a parser, that wen can define with generic input and output

types, as seen in the Listing 2.

The Incomplete(Needed) field allows a parser to indicate,

if it was not fed enough data, either that it needs a specific

143

Listing 3. Alphabetic character list parser

pub fn a l p h a (i n p u t :&[u8])

−> I R e s u l t <&[u8] , &[u8]> {

f o r i d x i n 0 . . i n p u t . l e n () {
i f ! i s a l p h a b e t i c (i n p u t [i d x]) {

r e t u r n Done(& i n p u t [i d x . .] ,

&i n p u t [0 . . i d x]

)

}
}
Done (b ” ” , i n p u t)

}

Listing 4. Slice implementation

pub fn l e n g t h v a l u e (i n p u t :&[u8])

−> I R e s u l t <&[u8] , &[u8]> {
l e t i n p u t l e n = i n p u t . l e n () ;

i f i n p u t l e n == 0 {
r e t u r n I R e s u l t : : E r r o r (0)

}

l e t l e n = i n p u t [0] a s u s i z e ;

i f i n p u t l e n − 1 >= l e n {
r e t u r n I R e s u l t : : Done (

&i n p u t [l e n + 1 . .] ,

&i n p u t [1 . . l e n +1]

)

} e l s e {
r e t u r n I R e s u l t : : I n c o m p l e t e (

Needed : : S i z e (1+ l e n as u32)

)

}
}

amount of data, or that it needs more data but does not know

how much.

We can then define a parser as a function taking an

input, and giving a IResult. For a simple function matching

alphabetic characters, we do not need to return any errors:

it will just return an empty output (cf listing 3).

Some basic parsers with error return can be defined, such

as the length-value pattern, frequent in network formats (cf

listing 4).

Note that data is never copied. By using the slicing API

for vectors, we can get a sized reference to a subset of the

vector, and use it throughout the code.

1) Combining parsers: After defining those functions, we

need ways to assemble them. The first function we need for

this is flat map. Such a flat map function allows us to apply

a parser on the result of another one, without rewrapping it

in the IResult type (cf listing 5).

We define it as a function implemented for a

IResult<I,O>, taking as argument another function working

Listing 5. FlatMap implementation

pub t r a i t FlatMap<I : ? Sized ,O: ? Sized ,

N: ? Sized> {
fn f l a t m a p <F : Fn (O) −> I R e s u l t <O, N>>

(& s e l f , f : F) −> I R e s u l t <I , N>;

}

impl <’a , R , S , T> Fla tMapper <&’a [S] , T>
f o r I R e s u l t <R,& ’ a [S]> {
fn f l a t m a p <F : Fn(& ’ a [S])

−> I R e s u l t <&’a [S] , T>>
(& s e l f , f : F) −> I R e s u l t <&’a [S] , T> {
match s e l f {

&E r r o r (r e f e) => E r r o r (∗ e) ,

&I n c o m p l e t e (Needed : : Unknown) => {
I n c o m p l e t e (Needed : : Unknown)

} ,

&I n c o m p l e t e (Needed : : S i z e (r e f i)) => {
I n c o m p l e t e (Needed : : S i z e (∗ i))

} ,

&Done (r e f i , r e f o) => match f (∗ o) {
E r r o r (r e f e) => E r r o r (∗ e) ,

I n c o m p l e t e (Needed : : Unknown) => {
I n c o m p l e t e (Needed : : Unknown)

} ,

I n c o m p l e t e (Needed : : S i z e (r e f i 2)) => {
I n c o m p l e t e (Needed : : S i z e (∗ i 2))

} ,

Done (, o2) => Done (∗ i , o2)

}
}

}
}

on the O type and returning another result. Because of the

way the type system is made, we have to define it for a lot

of <O,N> type combinaisons.

The tokens preceded by apostrophes are indications about

data lifetime for the compiler. Basically, all data tagged with

the lifetime ’a will stay allocated at the same time (or more

if allowed).

In this case, we have to define two lifetimes, one for the

output of the IResult, and one for the remaining input. Note

that the flat map function returns, at least in the case of a

type T that does not require a lifetime (on the contrary of

an array slice), a result that only depends on the ’a lifetime.

This is why the compiler allows data to be transmitted from

the beginning of the parsing chain to the end without copying

it: the compiler knows that the data at the end of the parsing

chain comes from the same buffer and will not deallocate it

until it is not needed anymore.

We also define a map operation on IResult, to work directly

with usual functions that return Option or Result types. Those

methods are essential, since we can reuse data transformation

functions already provided by Rust’s libraries (cf listings 7

144

Listing 6. FlatMap usage

Done (() , b ” abcd ”) . f l a t m a p (| d a t a | {
p r i n t l n ! (” d a t a : { : ?} ” , d a t a) ;

Done (da t a , ())

}) ;

Listing 7. FlatMapOpt implementation

pub t r a i t FlatMapOpt<I , O, N> {
fn map opt<F : Fn (O) −> Option<N>>

(& s e l f , f : F) −> I R e s u l t <I , N>;

f n map res<P , F : Fn (O) −> R e s u l t<N, P>>
(& s e l f , f : F) −> I R e s u l t <I , N>;

}

impl <’a , ’ b , R , S , T>
FlatMapOpt<&’b [R] ,& ’ a [S] , T>
f o r I R e s u l t <&’b [R] ,& ’ a [S]> {
fn map opt<F : Fn(& ’ a [S]) −> Option<T>>

(& s e l f , f : F) −> I R e s u l t <&’b [R] , T> {
match s e l f {

&E r r o r (r e f e) => E r r o r (∗ e) ,

&Done (r e f i , r e f o) => match f (∗ o) {
Some (o u t p u t) => Done (∗ i , o u t p u t) ,

None => E r r o r (0)

}
}

}

/ / f n map res<U, F : Fn(& ’ a [S])

−> R e s u l t<T , U>>
(& s e l f , f : F) −> I R e s u l t <&’b [R] , T> . . .

}

and 8).

2) Facilities for parser definitions: One of the issues with

Rust is that the developer has to be really precise about the

types used, and there is very limited type inference. The

code often ends up littered with type definitions, moreover

with highly generic code like this library. Fortunately, the

language offers a macro system with limited support for the

language construction: it can recognize arguments such as

types, identifiers, expressions and a few others. This permits

the definition of generic parser combinators.

The code in listing 9 defines a macro for optional usage

of a parser. It takes a name for the parser, an input type, an

output type, and another parser to apply. That way, we can

easily define an optional parser from another one, defined

Listing 8. FlatMapOpt usage

Done (() , b ” abcd ”) . map res (| d a t a | {
s t r : : f r o m u t f 8 (d a t a)

}) ;

Listing 9. Optional macro implementation

m a c r o r u l e s ! o p t (

($name : i d e n t <$ i : ty , $o : ty> $f : i d e n t)

=> (

fn $name (i n p u t : $ i)

−> I R e s u l t <$i , Opt ion<$o>> {
match $f (i n p u t) {

I R e s u l t : : Done (i , o) => {
I R e s u l t : : Done (i , Some (o))

} ,

=> {
I R e s u l t : : Done (i n p u t , None)

}
}

}
)

) ;

Listing 10. tag and optional macros usage

t a g ! (t x t p a r s e r b ” abcd ”) ;

o p t ! (o p t t x t p a r s e r <&[u8] , &[u8]> t x t p a r s e r) ;

a s s e r t e q ! (Done (() , b ” a b c d e f ”)

. f l a t m a p (o p t t x t p a r s e r) ,

Done (b ” e f ” , Some (b ” abcd ”))) ;

a s s e r t e q ! (Done (() , b ” bcde fgh ”)

. f l a t m a p (o) , Done (b ” b c de fg ” , None)) ;

with a macro itself (cf listing 10).

Most of the useful combinations, like the chain or alt
parsers are currently defined as macros themselves. The

macro usage allows flexibility in the syntax and helps in

representing interesting patterns, like filling a structure with

the chain macro (cf listing 11).

B. Streaming parsers

There are two sorts of streaming parsers. The push
parsers will parse data as soon as it arrives. Their goal is to

be fast, not smart. In nom, they were implemented through

the Producer trait, managing files or in-memory buffers (cf

listing 12).

The other type of streaming parser is more interesting: a

pull parser takes decisions based on the data it has seen,

can decide wether it needs more input, and can have support

for seeking. This is will more closely represent a protocol’s

state machine, or an application looking for the data it needs

through a file. It was implemented in nom with the Consumer
trait (cf listing 13).

A streaming parser, to be efficient, must be able to work

on incomplete data, and restart from there once new data is

available. The difficulty is then in two ways: recognizing the

difference between a parsing error and incomplete data, and

encoding it in the state machine.

145

Listing 11. chain macro usage

/ / matches a ” key = v a l u e ” i n a INI f i l e

/ / and r e t u r n s i t a s a t u p l e o f s t r i n g s

c h a i n ! (k e y v a l u e <&[u8] , (& s t r ,& s t r)> ,

key : p a r a m e t e r p a r s e r ˜

s p a c e ? ˜

e q u a l ˜

s p a c e ? ˜

v a l : v a l u e p a r s e r ˜

s p a c e ? ˜

comment body ? ˜

l i n e e n d i n g ? ,

| | { (key , v a l)}
) ;

Listing 12. Producer trait

pub enum P r o d u c e r S t a t e <O> {
Eof (O) ,

Cont inue ,

Data (O) ,

P r o d u c e r E r r o r (E r r) ,

}

pub t r a i t P r o d u c e r {
fn p roduce (&mut s e l f)

−> P r o d u c e r S t a t e <&[u8]>;

f n se ek (&mut s e l f ,

p o s i t i o n : SeekFrom)

−> Option<u64>;

}

This is the part where the zero copy claim gets compli-

cated. If new input must be added to the current buffer it

requires a reallocation, which will slow the parsing. And

parsing again the whole buffer will waste a lot of time.

Implementing efficient streaming parsing requires inter-

ventions in different parts of the code. In the parsers, but

also at the two ends of the parsing pipeline, the producers

(managing files or in-memory buffers) and the consumers

(handling the results and the state machine).

1) IResult::Incomplete: While it is a special case that

most parsers will not handle, returning Incomplete in some

cases allows the parser to ask for more input, and have that

message pass through all the combinators to the producer or

consumer handling the data.

Multiple implementations were tested. The first idea was

to return a closure in Incomplete, like Attoparsec’s partials,

but it proved too difficult for the ownership system to decide

what to do with the data captured, and failed compilation.

The second idea was to have two fields in IResult: Incom-
pleteUnknown and Incomplete(size), to represent the need for

more data, with or without a specific quantity in mind. This

Listing 13. Consumer trait

pub enum ConsumerS ta t e {
Await (

u s i z e , / / consumed

u s i z e / / needed b u f f e r s i z e

) ,

Seek (

u s i z e , / / consumed

SeekFrom , / / new p o s i t i o n

u s i z e / / needed b u f f e r s i z e

) ,

I n c o m p l e t e ,

ConsumerDone ,

ConsumerError (E r r)

}

pub t r a i t Consumer {
fn consume(&mut s e l f , i n p u t : &[u8])

−> ConsumerS ta t e ;

fn end(&mut s e l f) ;

fn run (&mut s e l f ,

p r o d u c e r : &mut P r o d u c e r) ;

}

had two issues: four fields to match in combinators made

the compilation too long, as it is heavily based on macros,

and this made too much boilerplate to write for parser and

consumer implementors.

The chosen solution is the one described in the IResult
definition in listing 2. Incomplete contains a sum type that

can be a size, or Unknown. This makes it easy to compile

in a reasonable time, parser developers can ignore the value

with pattern matching on Incomplete(), and developers with

more specific needs can obtain the value.

While the closure solution would have avoided some

redundant parsing of the input data, we will see that it is

not necessary in practice.

2) Seeking producer: While the producer does not need

to have much logic to manage data, making it able to signal

that more data is available can be useful to the consumer.

Making them seekable when possible, backward and forward

for files and memory buffers, forward for network packets,

allows an interesting speed improvement and a reduction of

memory consumption. We do not need to load the whole

buffer, since we can just jump to the part we want. Another

idea to improve producer performance is to make their chunk

size reconfigurable: after header parsing, the state machine

will often know how much more data it needs.

3) Partial parsing in the consumer: A consumer is writ-

ten by implementing the Consumer trait and its methods

consume and end. Then calling the run method with a

producer will start the parsing pipeline. The run method

handles data aggregation from the producer and passes it

to the consume method which will only care about parsing

146

and state modification. It is easily represented as a switch

between states, and applying the corresponding parsers, as

seen in that example consumer implementation (cf listing

14).

There are two things to note here. Since run handles

the ”plumbing”, it will not load more data than needed,

and will command the producer according to the returned

ConsumerState. The consumer only needs to indicate how

much was consumed and how much it needs, or where it

can be in the stream, and run will handle everything to

avoid unnecessary data copying. The other important point

is that we are not limited to parser states indicated in the

specification of a protocol or format. By making multiple

intermediary state, we can avoid parsing large parts of the

data multiple times if the input buffer is not large enough:

the parser will only return Incomplete on the most recent

buffer slice, and we keep the previously parsed data. Finally,

while switch-based state machines are easy to implement, it

is known that they make it easy to bypass parser states[10].

C. User experience

One of the goals of that project is to make it easy to write

complex parsers. This required work on multiple parts.

1) Parser combinators: Choosing parser combinators as

a basis proved useful, since writing parsers incrementally is

easier than trying to target the whole format at once. Most of

the parsers in nom and in its examples are unit tested. This

made experimentation a lot easier, since most of the code

was never broken silently.

Property based testing could be investigated, to make those

parser tests exhaustive.

2) Syntax: Earlier versions of the example parsers were

presented regularly to developers, to get feedback on read-

ability. The decisive factor for positive feedback was the in-

troduction of complex macros like the chain one, to abstract

all of the boilerplate.

The code still contains a lot of type definitions, which do

not help readability but are required by Rust.

The Rust compiler has a plugin facility allowing AST

manipulations. While those plugins are harder to write than

macros, they are more flexible, and could be used to make

more readable parsers.

3) State machine representation: Representing a state

machine in a usable way is a complex problem. While state

transitions are easy to encode (as a switch, a graph or a

matrix), interacting with the state machine through an API

and keeping the code easy to read is hard. A method of the

API has to ask for a specific ”path” in the state machine,

and gather the results in the terminal node (harder to do in

a typesafe way).

The currently planned approach is first to make state

machines and their transitions composable. This will allow

a same parsing path to be reused between multiple origin

and terminal nodes. Terminal nodes will hold a value of a

specific type, which will guarantee type safety when writing

code to interface state machines.

Listing 14. Consumer trait implementation

impl Consumer f o r TestConsumer {
fn consume(&mut s e l f , i n p u t : &[u8])

−> ConsumerS ta t e {
match s e l f . s t a t e {

S t a t e : : Beg inn ing => {
match o m p a r s e r (i n p u t) {

E r r o r (a) => {
ConsumerS ta t e : : ConsumerError (a)

} ,

I n c o m p l e t e () =>{
ConsumerS ta t e : : Await (0 , 2)

} ,

Done (,) => {
s e l f . s t a t e = S t a t e : : Middle ;

ConsumerS ta t e : : Await (2 , 3)

}
}

} ,

S t a t e : : Middle => {
match nomnom parser (i n p u t) {

E r r o r (a) => {
s e l f . s t a t e = S t a t e : : End ;

ConsumerS ta t e : : Await (0 , 7)

} ,

I n c o m p l e t e () => {
ConsumerS ta t e : : Await (0 , 3)

} ,

Done (i , noms vec) => {
s e l f . c o u n t e r = s e l f . c o u n t e r +

noms vec . l e n () ;

ConsumerS ta t e : : Await (i n p u t . l e n () −
i . l e n () , 3)

}
}

} ,

S t a t e : : End => {
match e n d p a r s e r (i n p u t) {

E r r o r (a) => {
ConsumerS ta t e : : ConsumerError (a)

} ,

I n c o m p l e t e () => {
ConsumerS ta t e : : Await (0 , 7)

} ,

Done (,) => {
s e l f . s t a t e = S t a t e : : Done ;

ConsumerS ta t e : : ConsumerDone

}
}

}
}

}

fn end(&mut s e l f) {
p r i n t l n ! (” c o u n t e d {} noms ” ,

s e l f . c o u n t e r) ;

}
}

147

The last step is to write the glue that will represent the

states, their transitions through parsers, and the type that can

be held by an ending state. Making an API available consists

in describing a named method which will set an origin state,

and wait for data of a specific type at a specific terminal

state. The origin state should be directly reachable from the

previous terminal state, and an arrival at a different terminal

state will be treated as an error. Of course, we make no

guarantee about the function terminating.

This state machine representation will most probably be

implemented as another macro system.

4) Example parsers: Three example parsers have been

provided with the code, one of them for the INI file format,

another one for the MP4 fie format.

While the INI format was useful to test different parser

combinations, the MP4 parser was the most interesting to test

the producers and consumers, since it had to work efficiently

on files from a few kilobytes to multiple gigabytes.

V. PERFORMANCE

Some limited benchmarks were done to compare nom’s

performances to more well known solutions, hammer and

Attoparsec. As always with benchmarks, they have to be

considered with skepticism. I am not an expert in writing

parsers with the other solutions and they probably could be

improved. As an example, the C parser with hammer did not

use any specific parser backend, another one may provide

better performance.

On the other side, the measured parser in nom does not

use any seeking or state machine optimization, only the most

nave recursive parsing. This forces all the parsers to load

all the data in memory before reading it, which make it

easier to compare them. There is another version of the MP4

parser available, that can handle seeking, and parses large

files easily.

This benchmark tests the ability to read two MP4 files,

parse the filetype header and go through all the other boxes in

the file, and measures the speed in nanoseconds per iteration.

This test was realized on a late 2013 Macbook Pro (CPU

quad core 2,3 GHz Intel Core i7). Each benchmark has been

done with and without compiler optimizations. The code is

available for reproduction[11].

TABLE I

BENCHMARK RESULTS WITHOUT OPTIMIZATIONS

small.mp4 (375kB) bigbuckbunny.mp4 (5.3 MB)
hammer 32807 ns/iter (+/- 91 ns) 28115 ns/iter (+/-82 ns)

attoparsec 1699 ns/iter (+/- 137 ns) 1601 ns/iter (+/- 105 ns)
nom 9619 ns/iter (+/- 1538 ns) 9083 ns/iter (+/- 2193 ns)

The hammer parser may not be completely optimized, and

had some memory leaks that will be fixed it in a future

release. It seems attoparsec does not get much faster after

optimizations, even using llvm as the compilation backend,

while nom gets a big performance improvement. The code

has not been profiled, so we cannot verify that memory

TABLE II

BENCHMARK RESULTS WITH OPTIMIZATIONS

small.mp4 (375kB) bigbuckbunny.mp4 (5.3 MB)
hammer 32424 ns/iter (+/- 47 ns) 26523 ns/iter (+/-77 ns)

attoparsec 1548 ns/iter (+/- 74 ns) 1476 ns/iter (+/- 69 ns)
nom 240 ns/iter (+/- 56 ns) 195 ns/iter (+/- 69 ns)

access patterns and slicing are the cause for the speedup.

Still, we were able to measure that the nom parser process

stays at 760 kB of memory while continuously parsing the

two files, and the attoparsec parser stays at 7.5 MB of

memory. For the nom parser, this is much less than the size

of the files, since it only manipulates slices, and does not

load the data unless it is needed.

Of the three tested parsers, the easiest to write was the

attoparsec one, then the nom one, then hammer.

VI. CONCLUSIONS

Rust has proven useful as a language to write parsers.

Its powerful macro system allow complex code to be written

naturally and safely. The zero-copy capability seems to make

the parsers quite fast.

Future work on this project would consist mainly in

writing more parsers, to tune its behaviour and fix inevitable

bugs, integrating property based testing and fuzzing (random

fuzzing, and state machine aware fuzzing), and implement-

ing the state machine representation described precedently.

Adding smarter parser backends like hammer would defi-

nitely be an interesting project, too.

REFERENCES

[1] Nicolas Matsakis,, Guaranteeing Memory Safety in Rust, video:
https://air.mozilla.org/guaranteeing-memory-safety-in-rust/ slides:
http://fr.slideshare.net/nikomatsakis/guaranteeing-memory-safety-in-
rust-39042975

[2] Unsafe and Low-Level Code, the Rust book, https://doc.rust-
lang.org/book/unsafe.html

[3] https://www.videolan.org/security/
[4] Periklis Akritidis, Practical memory safety for C, UCAM-CL-TR-798
[5] Steve Klabnik, The Story of Rust, FOSDEM 2015
[6] Ownership, the Rust book, https://doc.rust-

lang.org/book/ownership.html
[7] Patrick Walton, Removing Garbage Collection From the Rust

Language, http://pcwalton.github.io/blog/2013/06/02/removing-
garbage-collection-from-the-rust-language/

[8] Graham Hutton and Erik Meijer, Monadic Parser Combinators, 1996
[9] https://github.com/Geal/Pharsec

[10] SKIP-TLS attack, https://www.smacktls.com/#skip. Example patch for
mono at https://github.com/mono/mono/commit/1509226c41d7

[11] https://github.com/Geal/nom benchmarks. The last commit at the time
of the benchmark was b3034a5c857b702ed1f2b8de89166937caeff192

148

